Preparation of poly(lactic acid)-based shape memory polymers with low response temperature utilizing composite plasticizers
In this paper, we synthesized a triblock oligomer of poly(lactic acid) (PLA) and poly( ε -caprolactone) (PCL) by direct polycondensation of L -lactic acid and then condensation reaction with PCL diol. Then, the triblock oligomer was chain-extended with diisocyanate, and the PLA-based thermoplastic e...
Gespeichert in:
Veröffentlicht in: | Polymer bulletin (Berlin, Germany) Germany), 2022-07, Vol.79 (7), p.4761-4781 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4781 |
---|---|
container_issue | 7 |
container_start_page | 4761 |
container_title | Polymer bulletin (Berlin, Germany) |
container_volume | 79 |
creator | Luo, Fuhong Li, Jianbo Ji, Fan Weng, Yunxuan Ren, Jie |
description | In this paper, we synthesized a triblock oligomer of poly(lactic acid) (PLA) and poly(
ε
-caprolactone) (PCL) by direct polycondensation of
L
-lactic acid and then condensation reaction with PCL diol. Then, the triblock oligomer was chain-extended with diisocyanate, and the PLA-based thermoplastic elastomer (PLATPE) with high toughness and high ductility at room temperature was synthesized. The synthesized PLATPE and a partially biodegradable elastomeric poly(
ε
-caprolactone) polyurethane (PCLTPU) were used to prepare PLA-based shape memory polymer materials by melt blending with PLA resin. The morphologies, thermal properties, and shape memory properties of the two kinds of shape memory polymers were characterized. The results shows that the shape fixation rates of two systems are more than 95%. The shape recovery rate of PLA/PCLTPU can reach to 95%, while that of PLA/PLATPE is slightly higher than 80%. By adding composite plasticizers, the PLA/PCLTPU shape memory polymer system with better thermal stability was further modified to prepare a low-temperature-response shape memory polymer. When 10 wt% compound plasticizer (5 wt% Polysorb, 5 wt% ATBC) were added, the deformation recovery rate of PLA/PCLTPU = 80/20 can reach more than 90%, the shape fixation rate can be close to 100%, and the deformation recovery temperature can be reduced to around 40 °C. The biodegradable and biocompatible PLA-based shape memory polymer with low response temperature may have a potential application prospect in the field of biomedical materials. |
doi_str_mv | 10.1007/s00289-021-03739-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917875217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917875217</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e6c7973fc581fa6ef5cd1a6029825a06b4ce34357077d41c7f4f0766ec6a6ca83</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAix6iyWY32T1K8QsKetBzSLOzbcruJia7lNY_b2wFb56Ggfd9hnkQumT0llEq7yKlWVkRmjFCueQVYUdownIuSJbn1TGaUCYpoSWvTtFZjGuadiHYBH29BfA66MG6HrsGe9dur1ttBmuwNra-IQsdocZxpT3gDjoXtvtQByHijR1WuHUbHCB610fAA3QeEm4MgMfBtnZn-yU2rvMu2gGwb3VMbLtL9XN00ug2wsXvnKKPx4f32TOZvz69zO7nxHBWDQSEkZXkjSlK1mgBTWFqpgXNqjIrNBWL3ADPeSGplHXOjGzyhqbvwAgtjC75FF0duD64zxHioNZuDH06qbKKyVIWGZMplR1SJrgYAzTKB9vpsFWMqh_J6iBZJclqL1mxVOKHUkzhfgnhD_1P6xvRgIKM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917875217</pqid></control><display><type>article</type><title>Preparation of poly(lactic acid)-based shape memory polymers with low response temperature utilizing composite plasticizers</title><source>SpringerNature Journals</source><source>Proquest Central</source><source>ProQuest Central UK/Ireland</source><creator>Luo, Fuhong ; Li, Jianbo ; Ji, Fan ; Weng, Yunxuan ; Ren, Jie</creator><creatorcontrib>Luo, Fuhong ; Li, Jianbo ; Ji, Fan ; Weng, Yunxuan ; Ren, Jie</creatorcontrib><description>In this paper, we synthesized a triblock oligomer of poly(lactic acid) (PLA) and poly(
ε
-caprolactone) (PCL) by direct polycondensation of
L
-lactic acid and then condensation reaction with PCL diol. Then, the triblock oligomer was chain-extended with diisocyanate, and the PLA-based thermoplastic elastomer (PLATPE) with high toughness and high ductility at room temperature was synthesized. The synthesized PLATPE and a partially biodegradable elastomeric poly(
ε
-caprolactone) polyurethane (PCLTPU) were used to prepare PLA-based shape memory polymer materials by melt blending with PLA resin. The morphologies, thermal properties, and shape memory properties of the two kinds of shape memory polymers were characterized. The results shows that the shape fixation rates of two systems are more than 95%. The shape recovery rate of PLA/PCLTPU can reach to 95%, while that of PLA/PLATPE is slightly higher than 80%. By adding composite plasticizers, the PLA/PCLTPU shape memory polymer system with better thermal stability was further modified to prepare a low-temperature-response shape memory polymer. When 10 wt% compound plasticizer (5 wt% Polysorb, 5 wt% ATBC) were added, the deformation recovery rate of PLA/PCLTPU = 80/20 can reach more than 90%, the shape fixation rate can be close to 100%, and the deformation recovery temperature can be reduced to around 40 °C. The biodegradable and biocompatible PLA-based shape memory polymer with low response temperature may have a potential application prospect in the field of biomedical materials.</description><identifier>ISSN: 0170-0839</identifier><identifier>EISSN: 1436-2449</identifier><identifier>DOI: 10.1007/s00289-021-03739-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biocompatibility ; Biomedical materials ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Complex Fluids and Microfluidics ; Deformation ; Diisocyanates ; Elastomers ; Low temperature ; Melt blending ; Oligomers ; Organic Chemistry ; Original Paper ; Physical Chemistry ; Plasticizers ; Polycaprolactone ; Polyethylene glycol ; Polylactic acid ; Polymer Sciences ; Polymers ; Polyurethane resins ; Recovery ; Room temperature ; Shape memory ; Soft and Granular Matter ; Synthesis ; Thermal stability ; Thermodynamic properties</subject><ispartof>Polymer bulletin (Berlin, Germany), 2022-07, Vol.79 (7), p.4761-4781</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e6c7973fc581fa6ef5cd1a6029825a06b4ce34357077d41c7f4f0766ec6a6ca83</citedby><cites>FETCH-LOGICAL-c319t-e6c7973fc581fa6ef5cd1a6029825a06b4ce34357077d41c7f4f0766ec6a6ca83</cites><orcidid>0000-0002-3744-1470</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00289-021-03739-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917875217?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>315,781,785,21393,27929,27930,33749,41493,42562,43810,51324,64390,64394,72474</link.rule.ids></links><search><creatorcontrib>Luo, Fuhong</creatorcontrib><creatorcontrib>Li, Jianbo</creatorcontrib><creatorcontrib>Ji, Fan</creatorcontrib><creatorcontrib>Weng, Yunxuan</creatorcontrib><creatorcontrib>Ren, Jie</creatorcontrib><title>Preparation of poly(lactic acid)-based shape memory polymers with low response temperature utilizing composite plasticizers</title><title>Polymer bulletin (Berlin, Germany)</title><addtitle>Polym. Bull</addtitle><description>In this paper, we synthesized a triblock oligomer of poly(lactic acid) (PLA) and poly(
ε
-caprolactone) (PCL) by direct polycondensation of
L
-lactic acid and then condensation reaction with PCL diol. Then, the triblock oligomer was chain-extended with diisocyanate, and the PLA-based thermoplastic elastomer (PLATPE) with high toughness and high ductility at room temperature was synthesized. The synthesized PLATPE and a partially biodegradable elastomeric poly(
ε
-caprolactone) polyurethane (PCLTPU) were used to prepare PLA-based shape memory polymer materials by melt blending with PLA resin. The morphologies, thermal properties, and shape memory properties of the two kinds of shape memory polymers were characterized. The results shows that the shape fixation rates of two systems are more than 95%. The shape recovery rate of PLA/PCLTPU can reach to 95%, while that of PLA/PLATPE is slightly higher than 80%. By adding composite plasticizers, the PLA/PCLTPU shape memory polymer system with better thermal stability was further modified to prepare a low-temperature-response shape memory polymer. When 10 wt% compound plasticizer (5 wt% Polysorb, 5 wt% ATBC) were added, the deformation recovery rate of PLA/PCLTPU = 80/20 can reach more than 90%, the shape fixation rate can be close to 100%, and the deformation recovery temperature can be reduced to around 40 °C. The biodegradable and biocompatible PLA-based shape memory polymer with low response temperature may have a potential application prospect in the field of biomedical materials.</description><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Complex Fluids and Microfluidics</subject><subject>Deformation</subject><subject>Diisocyanates</subject><subject>Elastomers</subject><subject>Low temperature</subject><subject>Melt blending</subject><subject>Oligomers</subject><subject>Organic Chemistry</subject><subject>Original Paper</subject><subject>Physical Chemistry</subject><subject>Plasticizers</subject><subject>Polycaprolactone</subject><subject>Polyethylene glycol</subject><subject>Polylactic acid</subject><subject>Polymer Sciences</subject><subject>Polymers</subject><subject>Polyurethane resins</subject><subject>Recovery</subject><subject>Room temperature</subject><subject>Shape memory</subject><subject>Soft and Granular Matter</subject><subject>Synthesis</subject><subject>Thermal stability</subject><subject>Thermodynamic properties</subject><issn>0170-0839</issn><issn>1436-2449</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wFPAix6iyWY32T1K8QsKetBzSLOzbcruJia7lNY_b2wFb56Ggfd9hnkQumT0llEq7yKlWVkRmjFCueQVYUdownIuSJbn1TGaUCYpoSWvTtFZjGuadiHYBH29BfA66MG6HrsGe9dur1ttBmuwNra-IQsdocZxpT3gDjoXtvtQByHijR1WuHUbHCB610fAA3QeEm4MgMfBtnZn-yU2rvMu2gGwb3VMbLtL9XN00ug2wsXvnKKPx4f32TOZvz69zO7nxHBWDQSEkZXkjSlK1mgBTWFqpgXNqjIrNBWL3ADPeSGplHXOjGzyhqbvwAgtjC75FF0duD64zxHioNZuDH06qbKKyVIWGZMplR1SJrgYAzTKB9vpsFWMqh_J6iBZJclqL1mxVOKHUkzhfgnhD_1P6xvRgIKM</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Luo, Fuhong</creator><creator>Li, Jianbo</creator><creator>Ji, Fan</creator><creator>Weng, Yunxuan</creator><creator>Ren, Jie</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-3744-1470</orcidid></search><sort><creationdate>20220701</creationdate><title>Preparation of poly(lactic acid)-based shape memory polymers with low response temperature utilizing composite plasticizers</title><author>Luo, Fuhong ; Li, Jianbo ; Ji, Fan ; Weng, Yunxuan ; Ren, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e6c7973fc581fa6ef5cd1a6029825a06b4ce34357077d41c7f4f0766ec6a6ca83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Complex Fluids and Microfluidics</topic><topic>Deformation</topic><topic>Diisocyanates</topic><topic>Elastomers</topic><topic>Low temperature</topic><topic>Melt blending</topic><topic>Oligomers</topic><topic>Organic Chemistry</topic><topic>Original Paper</topic><topic>Physical Chemistry</topic><topic>Plasticizers</topic><topic>Polycaprolactone</topic><topic>Polyethylene glycol</topic><topic>Polylactic acid</topic><topic>Polymer Sciences</topic><topic>Polymers</topic><topic>Polyurethane resins</topic><topic>Recovery</topic><topic>Room temperature</topic><topic>Shape memory</topic><topic>Soft and Granular Matter</topic><topic>Synthesis</topic><topic>Thermal stability</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Fuhong</creatorcontrib><creatorcontrib>Li, Jianbo</creatorcontrib><creatorcontrib>Ji, Fan</creatorcontrib><creatorcontrib>Weng, Yunxuan</creatorcontrib><creatorcontrib>Ren, Jie</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Polymer bulletin (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Fuhong</au><au>Li, Jianbo</au><au>Ji, Fan</au><au>Weng, Yunxuan</au><au>Ren, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation of poly(lactic acid)-based shape memory polymers with low response temperature utilizing composite plasticizers</atitle><jtitle>Polymer bulletin (Berlin, Germany)</jtitle><stitle>Polym. Bull</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>79</volume><issue>7</issue><spage>4761</spage><epage>4781</epage><pages>4761-4781</pages><issn>0170-0839</issn><eissn>1436-2449</eissn><abstract>In this paper, we synthesized a triblock oligomer of poly(lactic acid) (PLA) and poly(
ε
-caprolactone) (PCL) by direct polycondensation of
L
-lactic acid and then condensation reaction with PCL diol. Then, the triblock oligomer was chain-extended with diisocyanate, and the PLA-based thermoplastic elastomer (PLATPE) with high toughness and high ductility at room temperature was synthesized. The synthesized PLATPE and a partially biodegradable elastomeric poly(
ε
-caprolactone) polyurethane (PCLTPU) were used to prepare PLA-based shape memory polymer materials by melt blending with PLA resin. The morphologies, thermal properties, and shape memory properties of the two kinds of shape memory polymers were characterized. The results shows that the shape fixation rates of two systems are more than 95%. The shape recovery rate of PLA/PCLTPU can reach to 95%, while that of PLA/PLATPE is slightly higher than 80%. By adding composite plasticizers, the PLA/PCLTPU shape memory polymer system with better thermal stability was further modified to prepare a low-temperature-response shape memory polymer. When 10 wt% compound plasticizer (5 wt% Polysorb, 5 wt% ATBC) were added, the deformation recovery rate of PLA/PCLTPU = 80/20 can reach more than 90%, the shape fixation rate can be close to 100%, and the deformation recovery temperature can be reduced to around 40 °C. The biodegradable and biocompatible PLA-based shape memory polymer with low response temperature may have a potential application prospect in the field of biomedical materials.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00289-021-03739-1</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-3744-1470</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-0839 |
ispartof | Polymer bulletin (Berlin, Germany), 2022-07, Vol.79 (7), p.4761-4781 |
issn | 0170-0839 1436-2449 |
language | eng |
recordid | cdi_proquest_journals_2917875217 |
source | SpringerNature Journals; Proquest Central; ProQuest Central UK/Ireland |
subjects | Biocompatibility Biomedical materials Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Complex Fluids and Microfluidics Deformation Diisocyanates Elastomers Low temperature Melt blending Oligomers Organic Chemistry Original Paper Physical Chemistry Plasticizers Polycaprolactone Polyethylene glycol Polylactic acid Polymer Sciences Polymers Polyurethane resins Recovery Room temperature Shape memory Soft and Granular Matter Synthesis Thermal stability Thermodynamic properties |
title | Preparation of poly(lactic acid)-based shape memory polymers with low response temperature utilizing composite plasticizers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T15%3A34%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20of%20poly(lactic%20acid)-based%20shape%20memory%20polymers%20with%20low%20response%20temperature%20utilizing%20composite%20plasticizers&rft.jtitle=Polymer%20bulletin%20(Berlin,%20Germany)&rft.au=Luo,%20Fuhong&rft.date=2022-07-01&rft.volume=79&rft.issue=7&rft.spage=4761&rft.epage=4781&rft.pages=4761-4781&rft.issn=0170-0839&rft.eissn=1436-2449&rft_id=info:doi/10.1007/s00289-021-03739-1&rft_dat=%3Cproquest_cross%3E2917875217%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917875217&rft_id=info:pmid/&rfr_iscdi=true |