Preparation of poly(lactic acid)-based shape memory polymers with low response temperature utilizing composite plasticizers

In this paper, we synthesized a triblock oligomer of poly(lactic acid) (PLA) and poly( ε -caprolactone) (PCL) by direct polycondensation of L -lactic acid and then condensation reaction with PCL diol. Then, the triblock oligomer was chain-extended with diisocyanate, and the PLA-based thermoplastic e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer bulletin (Berlin, Germany) Germany), 2022-07, Vol.79 (7), p.4761-4781
Hauptverfasser: Luo, Fuhong, Li, Jianbo, Ji, Fan, Weng, Yunxuan, Ren, Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4781
container_issue 7
container_start_page 4761
container_title Polymer bulletin (Berlin, Germany)
container_volume 79
creator Luo, Fuhong
Li, Jianbo
Ji, Fan
Weng, Yunxuan
Ren, Jie
description In this paper, we synthesized a triblock oligomer of poly(lactic acid) (PLA) and poly( ε -caprolactone) (PCL) by direct polycondensation of L -lactic acid and then condensation reaction with PCL diol. Then, the triblock oligomer was chain-extended with diisocyanate, and the PLA-based thermoplastic elastomer (PLATPE) with high toughness and high ductility at room temperature was synthesized. The synthesized PLATPE and a partially biodegradable elastomeric poly( ε -caprolactone) polyurethane (PCLTPU) were used to prepare PLA-based shape memory polymer materials by melt blending with PLA resin. The morphologies, thermal properties, and shape memory properties of the two kinds of shape memory polymers were characterized. The results shows that the shape fixation rates of two systems are more than 95%. The shape recovery rate of PLA/PCLTPU can reach to 95%, while that of PLA/PLATPE is slightly higher than 80%. By adding composite plasticizers, the PLA/PCLTPU shape memory polymer system with better thermal stability was further modified to prepare a low-temperature-response shape memory polymer. When 10 wt% compound plasticizer (5 wt% Polysorb, 5 wt% ATBC) were added, the deformation recovery rate of PLA/PCLTPU = 80/20 can reach more than 90%, the shape fixation rate can be close to 100%, and the deformation recovery temperature can be reduced to around 40 °C. The biodegradable and biocompatible PLA-based shape memory polymer with low response temperature may have a potential application prospect in the field of biomedical materials.
doi_str_mv 10.1007/s00289-021-03739-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917875217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917875217</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e6c7973fc581fa6ef5cd1a6029825a06b4ce34357077d41c7f4f0766ec6a6ca83</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAix6iyWY32T1K8QsKetBzSLOzbcruJia7lNY_b2wFb56Ggfd9hnkQumT0llEq7yKlWVkRmjFCueQVYUdownIuSJbn1TGaUCYpoSWvTtFZjGuadiHYBH29BfA66MG6HrsGe9dur1ttBmuwNra-IQsdocZxpT3gDjoXtvtQByHijR1WuHUbHCB610fAA3QeEm4MgMfBtnZn-yU2rvMu2gGwb3VMbLtL9XN00ug2wsXvnKKPx4f32TOZvz69zO7nxHBWDQSEkZXkjSlK1mgBTWFqpgXNqjIrNBWL3ADPeSGplHXOjGzyhqbvwAgtjC75FF0duD64zxHioNZuDH06qbKKyVIWGZMplR1SJrgYAzTKB9vpsFWMqh_J6iBZJclqL1mxVOKHUkzhfgnhD_1P6xvRgIKM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917875217</pqid></control><display><type>article</type><title>Preparation of poly(lactic acid)-based shape memory polymers with low response temperature utilizing composite plasticizers</title><source>SpringerNature Journals</source><source>Proquest Central</source><source>ProQuest Central UK/Ireland</source><creator>Luo, Fuhong ; Li, Jianbo ; Ji, Fan ; Weng, Yunxuan ; Ren, Jie</creator><creatorcontrib>Luo, Fuhong ; Li, Jianbo ; Ji, Fan ; Weng, Yunxuan ; Ren, Jie</creatorcontrib><description>In this paper, we synthesized a triblock oligomer of poly(lactic acid) (PLA) and poly( ε -caprolactone) (PCL) by direct polycondensation of L -lactic acid and then condensation reaction with PCL diol. Then, the triblock oligomer was chain-extended with diisocyanate, and the PLA-based thermoplastic elastomer (PLATPE) with high toughness and high ductility at room temperature was synthesized. The synthesized PLATPE and a partially biodegradable elastomeric poly( ε -caprolactone) polyurethane (PCLTPU) were used to prepare PLA-based shape memory polymer materials by melt blending with PLA resin. The morphologies, thermal properties, and shape memory properties of the two kinds of shape memory polymers were characterized. The results shows that the shape fixation rates of two systems are more than 95%. The shape recovery rate of PLA/PCLTPU can reach to 95%, while that of PLA/PLATPE is slightly higher than 80%. By adding composite plasticizers, the PLA/PCLTPU shape memory polymer system with better thermal stability was further modified to prepare a low-temperature-response shape memory polymer. When 10 wt% compound plasticizer (5 wt% Polysorb, 5 wt% ATBC) were added, the deformation recovery rate of PLA/PCLTPU = 80/20 can reach more than 90%, the shape fixation rate can be close to 100%, and the deformation recovery temperature can be reduced to around 40 °C. The biodegradable and biocompatible PLA-based shape memory polymer with low response temperature may have a potential application prospect in the field of biomedical materials.</description><identifier>ISSN: 0170-0839</identifier><identifier>EISSN: 1436-2449</identifier><identifier>DOI: 10.1007/s00289-021-03739-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biocompatibility ; Biomedical materials ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Complex Fluids and Microfluidics ; Deformation ; Diisocyanates ; Elastomers ; Low temperature ; Melt blending ; Oligomers ; Organic Chemistry ; Original Paper ; Physical Chemistry ; Plasticizers ; Polycaprolactone ; Polyethylene glycol ; Polylactic acid ; Polymer Sciences ; Polymers ; Polyurethane resins ; Recovery ; Room temperature ; Shape memory ; Soft and Granular Matter ; Synthesis ; Thermal stability ; Thermodynamic properties</subject><ispartof>Polymer bulletin (Berlin, Germany), 2022-07, Vol.79 (7), p.4761-4781</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e6c7973fc581fa6ef5cd1a6029825a06b4ce34357077d41c7f4f0766ec6a6ca83</citedby><cites>FETCH-LOGICAL-c319t-e6c7973fc581fa6ef5cd1a6029825a06b4ce34357077d41c7f4f0766ec6a6ca83</cites><orcidid>0000-0002-3744-1470</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00289-021-03739-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917875217?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>315,781,785,21393,27929,27930,33749,41493,42562,43810,51324,64390,64394,72474</link.rule.ids></links><search><creatorcontrib>Luo, Fuhong</creatorcontrib><creatorcontrib>Li, Jianbo</creatorcontrib><creatorcontrib>Ji, Fan</creatorcontrib><creatorcontrib>Weng, Yunxuan</creatorcontrib><creatorcontrib>Ren, Jie</creatorcontrib><title>Preparation of poly(lactic acid)-based shape memory polymers with low response temperature utilizing composite plasticizers</title><title>Polymer bulletin (Berlin, Germany)</title><addtitle>Polym. Bull</addtitle><description>In this paper, we synthesized a triblock oligomer of poly(lactic acid) (PLA) and poly( ε -caprolactone) (PCL) by direct polycondensation of L -lactic acid and then condensation reaction with PCL diol. Then, the triblock oligomer was chain-extended with diisocyanate, and the PLA-based thermoplastic elastomer (PLATPE) with high toughness and high ductility at room temperature was synthesized. The synthesized PLATPE and a partially biodegradable elastomeric poly( ε -caprolactone) polyurethane (PCLTPU) were used to prepare PLA-based shape memory polymer materials by melt blending with PLA resin. The morphologies, thermal properties, and shape memory properties of the two kinds of shape memory polymers were characterized. The results shows that the shape fixation rates of two systems are more than 95%. The shape recovery rate of PLA/PCLTPU can reach to 95%, while that of PLA/PLATPE is slightly higher than 80%. By adding composite plasticizers, the PLA/PCLTPU shape memory polymer system with better thermal stability was further modified to prepare a low-temperature-response shape memory polymer. When 10 wt% compound plasticizer (5 wt% Polysorb, 5 wt% ATBC) were added, the deformation recovery rate of PLA/PCLTPU = 80/20 can reach more than 90%, the shape fixation rate can be close to 100%, and the deformation recovery temperature can be reduced to around 40 °C. The biodegradable and biocompatible PLA-based shape memory polymer with low response temperature may have a potential application prospect in the field of biomedical materials.</description><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Complex Fluids and Microfluidics</subject><subject>Deformation</subject><subject>Diisocyanates</subject><subject>Elastomers</subject><subject>Low temperature</subject><subject>Melt blending</subject><subject>Oligomers</subject><subject>Organic Chemistry</subject><subject>Original Paper</subject><subject>Physical Chemistry</subject><subject>Plasticizers</subject><subject>Polycaprolactone</subject><subject>Polyethylene glycol</subject><subject>Polylactic acid</subject><subject>Polymer Sciences</subject><subject>Polymers</subject><subject>Polyurethane resins</subject><subject>Recovery</subject><subject>Room temperature</subject><subject>Shape memory</subject><subject>Soft and Granular Matter</subject><subject>Synthesis</subject><subject>Thermal stability</subject><subject>Thermodynamic properties</subject><issn>0170-0839</issn><issn>1436-2449</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wFPAix6iyWY32T1K8QsKetBzSLOzbcruJia7lNY_b2wFb56Ggfd9hnkQumT0llEq7yKlWVkRmjFCueQVYUdownIuSJbn1TGaUCYpoSWvTtFZjGuadiHYBH29BfA66MG6HrsGe9dur1ttBmuwNra-IQsdocZxpT3gDjoXtvtQByHijR1WuHUbHCB610fAA3QeEm4MgMfBtnZn-yU2rvMu2gGwb3VMbLtL9XN00ug2wsXvnKKPx4f32TOZvz69zO7nxHBWDQSEkZXkjSlK1mgBTWFqpgXNqjIrNBWL3ADPeSGplHXOjGzyhqbvwAgtjC75FF0duD64zxHioNZuDH06qbKKyVIWGZMplR1SJrgYAzTKB9vpsFWMqh_J6iBZJclqL1mxVOKHUkzhfgnhD_1P6xvRgIKM</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Luo, Fuhong</creator><creator>Li, Jianbo</creator><creator>Ji, Fan</creator><creator>Weng, Yunxuan</creator><creator>Ren, Jie</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-3744-1470</orcidid></search><sort><creationdate>20220701</creationdate><title>Preparation of poly(lactic acid)-based shape memory polymers with low response temperature utilizing composite plasticizers</title><author>Luo, Fuhong ; Li, Jianbo ; Ji, Fan ; Weng, Yunxuan ; Ren, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e6c7973fc581fa6ef5cd1a6029825a06b4ce34357077d41c7f4f0766ec6a6ca83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Complex Fluids and Microfluidics</topic><topic>Deformation</topic><topic>Diisocyanates</topic><topic>Elastomers</topic><topic>Low temperature</topic><topic>Melt blending</topic><topic>Oligomers</topic><topic>Organic Chemistry</topic><topic>Original Paper</topic><topic>Physical Chemistry</topic><topic>Plasticizers</topic><topic>Polycaprolactone</topic><topic>Polyethylene glycol</topic><topic>Polylactic acid</topic><topic>Polymer Sciences</topic><topic>Polymers</topic><topic>Polyurethane resins</topic><topic>Recovery</topic><topic>Room temperature</topic><topic>Shape memory</topic><topic>Soft and Granular Matter</topic><topic>Synthesis</topic><topic>Thermal stability</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Fuhong</creatorcontrib><creatorcontrib>Li, Jianbo</creatorcontrib><creatorcontrib>Ji, Fan</creatorcontrib><creatorcontrib>Weng, Yunxuan</creatorcontrib><creatorcontrib>Ren, Jie</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Polymer bulletin (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Fuhong</au><au>Li, Jianbo</au><au>Ji, Fan</au><au>Weng, Yunxuan</au><au>Ren, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation of poly(lactic acid)-based shape memory polymers with low response temperature utilizing composite plasticizers</atitle><jtitle>Polymer bulletin (Berlin, Germany)</jtitle><stitle>Polym. Bull</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>79</volume><issue>7</issue><spage>4761</spage><epage>4781</epage><pages>4761-4781</pages><issn>0170-0839</issn><eissn>1436-2449</eissn><abstract>In this paper, we synthesized a triblock oligomer of poly(lactic acid) (PLA) and poly( ε -caprolactone) (PCL) by direct polycondensation of L -lactic acid and then condensation reaction with PCL diol. Then, the triblock oligomer was chain-extended with diisocyanate, and the PLA-based thermoplastic elastomer (PLATPE) with high toughness and high ductility at room temperature was synthesized. The synthesized PLATPE and a partially biodegradable elastomeric poly( ε -caprolactone) polyurethane (PCLTPU) were used to prepare PLA-based shape memory polymer materials by melt blending with PLA resin. The morphologies, thermal properties, and shape memory properties of the two kinds of shape memory polymers were characterized. The results shows that the shape fixation rates of two systems are more than 95%. The shape recovery rate of PLA/PCLTPU can reach to 95%, while that of PLA/PLATPE is slightly higher than 80%. By adding composite plasticizers, the PLA/PCLTPU shape memory polymer system with better thermal stability was further modified to prepare a low-temperature-response shape memory polymer. When 10 wt% compound plasticizer (5 wt% Polysorb, 5 wt% ATBC) were added, the deformation recovery rate of PLA/PCLTPU = 80/20 can reach more than 90%, the shape fixation rate can be close to 100%, and the deformation recovery temperature can be reduced to around 40 °C. The biodegradable and biocompatible PLA-based shape memory polymer with low response temperature may have a potential application prospect in the field of biomedical materials.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00289-021-03739-1</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-3744-1470</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-0839
ispartof Polymer bulletin (Berlin, Germany), 2022-07, Vol.79 (7), p.4761-4781
issn 0170-0839
1436-2449
language eng
recordid cdi_proquest_journals_2917875217
source SpringerNature Journals; Proquest Central; ProQuest Central UK/Ireland
subjects Biocompatibility
Biomedical materials
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Complex Fluids and Microfluidics
Deformation
Diisocyanates
Elastomers
Low temperature
Melt blending
Oligomers
Organic Chemistry
Original Paper
Physical Chemistry
Plasticizers
Polycaprolactone
Polyethylene glycol
Polylactic acid
Polymer Sciences
Polymers
Polyurethane resins
Recovery
Room temperature
Shape memory
Soft and Granular Matter
Synthesis
Thermal stability
Thermodynamic properties
title Preparation of poly(lactic acid)-based shape memory polymers with low response temperature utilizing composite plasticizers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T15%3A34%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20of%20poly(lactic%20acid)-based%20shape%20memory%20polymers%20with%20low%20response%20temperature%20utilizing%20composite%20plasticizers&rft.jtitle=Polymer%20bulletin%20(Berlin,%20Germany)&rft.au=Luo,%20Fuhong&rft.date=2022-07-01&rft.volume=79&rft.issue=7&rft.spage=4761&rft.epage=4781&rft.pages=4761-4781&rft.issn=0170-0839&rft.eissn=1436-2449&rft_id=info:doi/10.1007/s00289-021-03739-1&rft_dat=%3Cproquest_cross%3E2917875217%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917875217&rft_id=info:pmid/&rfr_iscdi=true