High performance polyvinyl alcohol/calcium titanate nanocomposite anion-exchange membranes as separators in redox flow batteries

Low ionic conductivity and poor chemical stability are the two key parameters that limit the use of many anion-exchange membranes in electrochemical applications like rechargeable batteries and fuel cells. Herein we report a method for the synthesis of a high performance anion-exchange membrane fabr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer bulletin (Berlin, Germany) Germany), 2018-10, Vol.75 (10), p.4409-4428
Hauptverfasser: Moly, P. P., Jeena, C. B., Elsa, P. J., Ambily, K. J., Joy, V. T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4428
container_issue 10
container_start_page 4409
container_title Polymer bulletin (Berlin, Germany)
container_volume 75
creator Moly, P. P.
Jeena, C. B.
Elsa, P. J.
Ambily, K. J.
Joy, V. T.
description Low ionic conductivity and poor chemical stability are the two key parameters that limit the use of many anion-exchange membranes in electrochemical applications like rechargeable batteries and fuel cells. Herein we report a method for the synthesis of a high performance anion-exchange membrane fabricated by incorporating calcium titanate nanoparticles (CaTiO 3 ) into polyvinyl alcohol (PVA) matrix. The CaTiO 3 was synthesized by a new co-precipitation method from a solution of two simple precursors, viz potassium titanyl oxalate and calcium chloride. The XRD data of the synthesized nanoparticles indicate a phase pure orthorhombic perovskite structure. Morphological features investigated with SEM and TEM studies, reveal that the CaTiO 3 is having spherical shape with a diameter of approximately 200 nm. The PVA/CaTiO 3 nanocomposite membranes were fabricated by solution casting method from a well dispersed suspension of CaTiO 3 in PVA and characterized by FT-IR spectroscopy, TGA, SEM, AC impedance analysis and tensile strength measurements. The membranes with 30 wt% CaTiO 3 content possess ionic conductivity of 66 mS cm −1 at room temperature. The electrochemical performance of an all-iron redox flow cell was studied using galvanostatic charge–discharge tests using the above nanocomposite membrane as separator and the system exhibited a coulombic efficiency of 75% during the charge–discharge cycles.
doi_str_mv 10.1007/s00289-018-2277-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917873688</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917873688</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-d2dc64e4289928ed8828897d8cd982792a9668fe02a5088162fffdd4099146873</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKs_wFvAc2yS3WaToxS1QsGLnkOanW1TdpM12Wp786ebsoInTzMP3nvDfAjdMnrPKK1miVIuFaFMEs6rivAzNGFlIQgvS3WOJpRVlFBZqEt0ldKOZi0Em6DvpdtscQ-xCbEz3gLuQ3v8dP7YYtPasA3tzObF7Ts8uMF4MwD2xgcbuj4kl5XxLngCB7s1fgO4g24djYeETcIJehPNEGLCzuMIdTjgpg1feG2GAaKDdI0uGtMmuPmdU_T-9Pi2WJLV6_PL4mFFbDEvBlLz2ooSyvyk4hJqKbmUqqqlrZXkleJGCSEboNzMqZRM8KZp6rqkSrFSyKqYoruxt4_hYw9p0Luwjz6f1FyxKjuElNnFRpeNIaUIje6j60w8akb1CbQeQesMWp9Aa54zfMyk7M0E4l_z_6EfMlKDBw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917873688</pqid></control><display><type>article</type><title>High performance polyvinyl alcohol/calcium titanate nanocomposite anion-exchange membranes as separators in redox flow batteries</title><source>SpringerNature Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Moly, P. P. ; Jeena, C. B. ; Elsa, P. J. ; Ambily, K. J. ; Joy, V. T.</creator><creatorcontrib>Moly, P. P. ; Jeena, C. B. ; Elsa, P. J. ; Ambily, K. J. ; Joy, V. T.</creatorcontrib><description>Low ionic conductivity and poor chemical stability are the two key parameters that limit the use of many anion-exchange membranes in electrochemical applications like rechargeable batteries and fuel cells. Herein we report a method for the synthesis of a high performance anion-exchange membrane fabricated by incorporating calcium titanate nanoparticles (CaTiO 3 ) into polyvinyl alcohol (PVA) matrix. The CaTiO 3 was synthesized by a new co-precipitation method from a solution of two simple precursors, viz potassium titanyl oxalate and calcium chloride. The XRD data of the synthesized nanoparticles indicate a phase pure orthorhombic perovskite structure. Morphological features investigated with SEM and TEM studies, reveal that the CaTiO 3 is having spherical shape with a diameter of approximately 200 nm. The PVA/CaTiO 3 nanocomposite membranes were fabricated by solution casting method from a well dispersed suspension of CaTiO 3 in PVA and characterized by FT-IR spectroscopy, TGA, SEM, AC impedance analysis and tensile strength measurements. The membranes with 30 wt% CaTiO 3 content possess ionic conductivity of 66 mS cm −1 at room temperature. The electrochemical performance of an all-iron redox flow cell was studied using galvanostatic charge–discharge tests using the above nanocomposite membrane as separator and the system exhibited a coulombic efficiency of 75% during the charge–discharge cycles.</description><identifier>ISSN: 0170-0839</identifier><identifier>EISSN: 1436-2449</identifier><identifier>DOI: 10.1007/s00289-018-2277-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Anion exchanging ; Batteries ; Calcium chloride ; Calcium titanate ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Complex Fluids and Microfluidics ; Diameters ; Dielectric properties ; Discharge ; Electrochemical analysis ; Electron microscopes ; Flow stability ; Fuel cells ; Infrared spectroscopy ; Ion currents ; Membranes ; Nanocomposites ; Nanocrystals ; Nanoparticles ; Organic Chemistry ; Original Paper ; Perovskite structure ; Perovskites ; Physical Chemistry ; Polymer Sciences ; Polymers ; Polyvinyl alcohol ; Potassium ; Rechargeable batteries ; Room temperature ; Separators ; Soft and Granular Matter ; Spectrum analysis ; Synthesis ; Tensile strength</subject><ispartof>Polymer bulletin (Berlin, Germany), 2018-10, Vol.75 (10), p.4409-4428</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-d2dc64e4289928ed8828897d8cd982792a9668fe02a5088162fffdd4099146873</citedby><cites>FETCH-LOGICAL-c353t-d2dc64e4289928ed8828897d8cd982792a9668fe02a5088162fffdd4099146873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00289-018-2277-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917873688?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Moly, P. P.</creatorcontrib><creatorcontrib>Jeena, C. B.</creatorcontrib><creatorcontrib>Elsa, P. J.</creatorcontrib><creatorcontrib>Ambily, K. J.</creatorcontrib><creatorcontrib>Joy, V. T.</creatorcontrib><title>High performance polyvinyl alcohol/calcium titanate nanocomposite anion-exchange membranes as separators in redox flow batteries</title><title>Polymer bulletin (Berlin, Germany)</title><addtitle>Polym. Bull</addtitle><description>Low ionic conductivity and poor chemical stability are the two key parameters that limit the use of many anion-exchange membranes in electrochemical applications like rechargeable batteries and fuel cells. Herein we report a method for the synthesis of a high performance anion-exchange membrane fabricated by incorporating calcium titanate nanoparticles (CaTiO 3 ) into polyvinyl alcohol (PVA) matrix. The CaTiO 3 was synthesized by a new co-precipitation method from a solution of two simple precursors, viz potassium titanyl oxalate and calcium chloride. The XRD data of the synthesized nanoparticles indicate a phase pure orthorhombic perovskite structure. Morphological features investigated with SEM and TEM studies, reveal that the CaTiO 3 is having spherical shape with a diameter of approximately 200 nm. The PVA/CaTiO 3 nanocomposite membranes were fabricated by solution casting method from a well dispersed suspension of CaTiO 3 in PVA and characterized by FT-IR spectroscopy, TGA, SEM, AC impedance analysis and tensile strength measurements. The membranes with 30 wt% CaTiO 3 content possess ionic conductivity of 66 mS cm −1 at room temperature. The electrochemical performance of an all-iron redox flow cell was studied using galvanostatic charge–discharge tests using the above nanocomposite membrane as separator and the system exhibited a coulombic efficiency of 75% during the charge–discharge cycles.</description><subject>Anion exchanging</subject><subject>Batteries</subject><subject>Calcium chloride</subject><subject>Calcium titanate</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Complex Fluids and Microfluidics</subject><subject>Diameters</subject><subject>Dielectric properties</subject><subject>Discharge</subject><subject>Electrochemical analysis</subject><subject>Electron microscopes</subject><subject>Flow stability</subject><subject>Fuel cells</subject><subject>Infrared spectroscopy</subject><subject>Ion currents</subject><subject>Membranes</subject><subject>Nanocomposites</subject><subject>Nanocrystals</subject><subject>Nanoparticles</subject><subject>Organic Chemistry</subject><subject>Original Paper</subject><subject>Perovskite structure</subject><subject>Perovskites</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Polymers</subject><subject>Polyvinyl alcohol</subject><subject>Potassium</subject><subject>Rechargeable batteries</subject><subject>Room temperature</subject><subject>Separators</subject><subject>Soft and Granular Matter</subject><subject>Spectrum analysis</subject><subject>Synthesis</subject><subject>Tensile strength</subject><issn>0170-0839</issn><issn>1436-2449</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kEFLAzEQhYMoWKs_wFvAc2yS3WaToxS1QsGLnkOanW1TdpM12Wp786ebsoInTzMP3nvDfAjdMnrPKK1miVIuFaFMEs6rivAzNGFlIQgvS3WOJpRVlFBZqEt0ldKOZi0Em6DvpdtscQ-xCbEz3gLuQ3v8dP7YYtPasA3tzObF7Ts8uMF4MwD2xgcbuj4kl5XxLngCB7s1fgO4g24djYeETcIJehPNEGLCzuMIdTjgpg1feG2GAaKDdI0uGtMmuPmdU_T-9Pi2WJLV6_PL4mFFbDEvBlLz2ooSyvyk4hJqKbmUqqqlrZXkleJGCSEboNzMqZRM8KZp6rqkSrFSyKqYoruxt4_hYw9p0Luwjz6f1FyxKjuElNnFRpeNIaUIje6j60w8akb1CbQeQesMWp9Aa54zfMyk7M0E4l_z_6EfMlKDBw</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Moly, P. P.</creator><creator>Jeena, C. B.</creator><creator>Elsa, P. J.</creator><creator>Ambily, K. J.</creator><creator>Joy, V. T.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20181001</creationdate><title>High performance polyvinyl alcohol/calcium titanate nanocomposite anion-exchange membranes as separators in redox flow batteries</title><author>Moly, P. P. ; Jeena, C. B. ; Elsa, P. J. ; Ambily, K. J. ; Joy, V. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-d2dc64e4289928ed8828897d8cd982792a9668fe02a5088162fffdd4099146873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anion exchanging</topic><topic>Batteries</topic><topic>Calcium chloride</topic><topic>Calcium titanate</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Complex Fluids and Microfluidics</topic><topic>Diameters</topic><topic>Dielectric properties</topic><topic>Discharge</topic><topic>Electrochemical analysis</topic><topic>Electron microscopes</topic><topic>Flow stability</topic><topic>Fuel cells</topic><topic>Infrared spectroscopy</topic><topic>Ion currents</topic><topic>Membranes</topic><topic>Nanocomposites</topic><topic>Nanocrystals</topic><topic>Nanoparticles</topic><topic>Organic Chemistry</topic><topic>Original Paper</topic><topic>Perovskite structure</topic><topic>Perovskites</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Polymers</topic><topic>Polyvinyl alcohol</topic><topic>Potassium</topic><topic>Rechargeable batteries</topic><topic>Room temperature</topic><topic>Separators</topic><topic>Soft and Granular Matter</topic><topic>Spectrum analysis</topic><topic>Synthesis</topic><topic>Tensile strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moly, P. P.</creatorcontrib><creatorcontrib>Jeena, C. B.</creatorcontrib><creatorcontrib>Elsa, P. J.</creatorcontrib><creatorcontrib>Ambily, K. J.</creatorcontrib><creatorcontrib>Joy, V. T.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Polymer bulletin (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moly, P. P.</au><au>Jeena, C. B.</au><au>Elsa, P. J.</au><au>Ambily, K. J.</au><au>Joy, V. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High performance polyvinyl alcohol/calcium titanate nanocomposite anion-exchange membranes as separators in redox flow batteries</atitle><jtitle>Polymer bulletin (Berlin, Germany)</jtitle><stitle>Polym. Bull</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>75</volume><issue>10</issue><spage>4409</spage><epage>4428</epage><pages>4409-4428</pages><issn>0170-0839</issn><eissn>1436-2449</eissn><abstract>Low ionic conductivity and poor chemical stability are the two key parameters that limit the use of many anion-exchange membranes in electrochemical applications like rechargeable batteries and fuel cells. Herein we report a method for the synthesis of a high performance anion-exchange membrane fabricated by incorporating calcium titanate nanoparticles (CaTiO 3 ) into polyvinyl alcohol (PVA) matrix. The CaTiO 3 was synthesized by a new co-precipitation method from a solution of two simple precursors, viz potassium titanyl oxalate and calcium chloride. The XRD data of the synthesized nanoparticles indicate a phase pure orthorhombic perovskite structure. Morphological features investigated with SEM and TEM studies, reveal that the CaTiO 3 is having spherical shape with a diameter of approximately 200 nm. The PVA/CaTiO 3 nanocomposite membranes were fabricated by solution casting method from a well dispersed suspension of CaTiO 3 in PVA and characterized by FT-IR spectroscopy, TGA, SEM, AC impedance analysis and tensile strength measurements. The membranes with 30 wt% CaTiO 3 content possess ionic conductivity of 66 mS cm −1 at room temperature. The electrochemical performance of an all-iron redox flow cell was studied using galvanostatic charge–discharge tests using the above nanocomposite membrane as separator and the system exhibited a coulombic efficiency of 75% during the charge–discharge cycles.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00289-018-2277-2</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0170-0839
ispartof Polymer bulletin (Berlin, Germany), 2018-10, Vol.75 (10), p.4409-4428
issn 0170-0839
1436-2449
language eng
recordid cdi_proquest_journals_2917873688
source SpringerNature Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Anion exchanging
Batteries
Calcium chloride
Calcium titanate
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Complex Fluids and Microfluidics
Diameters
Dielectric properties
Discharge
Electrochemical analysis
Electron microscopes
Flow stability
Fuel cells
Infrared spectroscopy
Ion currents
Membranes
Nanocomposites
Nanocrystals
Nanoparticles
Organic Chemistry
Original Paper
Perovskite structure
Perovskites
Physical Chemistry
Polymer Sciences
Polymers
Polyvinyl alcohol
Potassium
Rechargeable batteries
Room temperature
Separators
Soft and Granular Matter
Spectrum analysis
Synthesis
Tensile strength
title High performance polyvinyl alcohol/calcium titanate nanocomposite anion-exchange membranes as separators in redox flow batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A53%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20performance%20polyvinyl%20alcohol/calcium%20titanate%20nanocomposite%20anion-exchange%20membranes%20as%20separators%20in%20redox%20flow%20batteries&rft.jtitle=Polymer%20bulletin%20(Berlin,%20Germany)&rft.au=Moly,%20P.%20P.&rft.date=2018-10-01&rft.volume=75&rft.issue=10&rft.spage=4409&rft.epage=4428&rft.pages=4409-4428&rft.issn=0170-0839&rft.eissn=1436-2449&rft_id=info:doi/10.1007/s00289-018-2277-2&rft_dat=%3Cproquest_cross%3E2917873688%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917873688&rft_id=info:pmid/&rfr_iscdi=true