High performance polyvinyl alcohol/calcium titanate nanocomposite anion-exchange membranes as separators in redox flow batteries
Low ionic conductivity and poor chemical stability are the two key parameters that limit the use of many anion-exchange membranes in electrochemical applications like rechargeable batteries and fuel cells. Herein we report a method for the synthesis of a high performance anion-exchange membrane fabr...
Gespeichert in:
Veröffentlicht in: | Polymer bulletin (Berlin, Germany) Germany), 2018-10, Vol.75 (10), p.4409-4428 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4428 |
---|---|
container_issue | 10 |
container_start_page | 4409 |
container_title | Polymer bulletin (Berlin, Germany) |
container_volume | 75 |
creator | Moly, P. P. Jeena, C. B. Elsa, P. J. Ambily, K. J. Joy, V. T. |
description | Low ionic conductivity and poor chemical stability are the two key parameters that limit the use of many anion-exchange membranes in electrochemical applications like rechargeable batteries and fuel cells. Herein we report a method for the synthesis of a high performance anion-exchange membrane fabricated by incorporating calcium titanate nanoparticles (CaTiO
3
) into polyvinyl alcohol (PVA) matrix. The CaTiO
3
was synthesized by a new co-precipitation method from a solution of two simple precursors, viz potassium titanyl oxalate and calcium chloride. The XRD data of the synthesized nanoparticles indicate a phase pure orthorhombic perovskite structure. Morphological features investigated with SEM and TEM studies, reveal that the CaTiO
3
is having spherical shape with a diameter of approximately 200 nm. The PVA/CaTiO
3
nanocomposite membranes were fabricated by solution casting method from a well dispersed suspension of CaTiO
3
in PVA and characterized by FT-IR spectroscopy, TGA, SEM, AC impedance analysis and tensile strength measurements. The membranes with 30 wt% CaTiO
3
content possess ionic conductivity of 66 mS cm
−1
at room temperature. The electrochemical performance of an all-iron redox flow cell was studied using galvanostatic charge–discharge tests using the above nanocomposite membrane as separator and the system exhibited a coulombic efficiency of 75% during the charge–discharge cycles. |
doi_str_mv | 10.1007/s00289-018-2277-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917873688</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917873688</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-d2dc64e4289928ed8828897d8cd982792a9668fe02a5088162fffdd4099146873</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKs_wFvAc2yS3WaToxS1QsGLnkOanW1TdpM12Wp786ebsoInTzMP3nvDfAjdMnrPKK1miVIuFaFMEs6rivAzNGFlIQgvS3WOJpRVlFBZqEt0ldKOZi0Em6DvpdtscQ-xCbEz3gLuQ3v8dP7YYtPasA3tzObF7Ts8uMF4MwD2xgcbuj4kl5XxLngCB7s1fgO4g24djYeETcIJehPNEGLCzuMIdTjgpg1feG2GAaKDdI0uGtMmuPmdU_T-9Pi2WJLV6_PL4mFFbDEvBlLz2ooSyvyk4hJqKbmUqqqlrZXkleJGCSEboNzMqZRM8KZp6rqkSrFSyKqYoruxt4_hYw9p0Luwjz6f1FyxKjuElNnFRpeNIaUIje6j60w8akb1CbQeQesMWp9Aa54zfMyk7M0E4l_z_6EfMlKDBw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917873688</pqid></control><display><type>article</type><title>High performance polyvinyl alcohol/calcium titanate nanocomposite anion-exchange membranes as separators in redox flow batteries</title><source>SpringerNature Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Moly, P. P. ; Jeena, C. B. ; Elsa, P. J. ; Ambily, K. J. ; Joy, V. T.</creator><creatorcontrib>Moly, P. P. ; Jeena, C. B. ; Elsa, P. J. ; Ambily, K. J. ; Joy, V. T.</creatorcontrib><description>Low ionic conductivity and poor chemical stability are the two key parameters that limit the use of many anion-exchange membranes in electrochemical applications like rechargeable batteries and fuel cells. Herein we report a method for the synthesis of a high performance anion-exchange membrane fabricated by incorporating calcium titanate nanoparticles (CaTiO
3
) into polyvinyl alcohol (PVA) matrix. The CaTiO
3
was synthesized by a new co-precipitation method from a solution of two simple precursors, viz potassium titanyl oxalate and calcium chloride. The XRD data of the synthesized nanoparticles indicate a phase pure orthorhombic perovskite structure. Morphological features investigated with SEM and TEM studies, reveal that the CaTiO
3
is having spherical shape with a diameter of approximately 200 nm. The PVA/CaTiO
3
nanocomposite membranes were fabricated by solution casting method from a well dispersed suspension of CaTiO
3
in PVA and characterized by FT-IR spectroscopy, TGA, SEM, AC impedance analysis and tensile strength measurements. The membranes with 30 wt% CaTiO
3
content possess ionic conductivity of 66 mS cm
−1
at room temperature. The electrochemical performance of an all-iron redox flow cell was studied using galvanostatic charge–discharge tests using the above nanocomposite membrane as separator and the system exhibited a coulombic efficiency of 75% during the charge–discharge cycles.</description><identifier>ISSN: 0170-0839</identifier><identifier>EISSN: 1436-2449</identifier><identifier>DOI: 10.1007/s00289-018-2277-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Anion exchanging ; Batteries ; Calcium chloride ; Calcium titanate ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Complex Fluids and Microfluidics ; Diameters ; Dielectric properties ; Discharge ; Electrochemical analysis ; Electron microscopes ; Flow stability ; Fuel cells ; Infrared spectroscopy ; Ion currents ; Membranes ; Nanocomposites ; Nanocrystals ; Nanoparticles ; Organic Chemistry ; Original Paper ; Perovskite structure ; Perovskites ; Physical Chemistry ; Polymer Sciences ; Polymers ; Polyvinyl alcohol ; Potassium ; Rechargeable batteries ; Room temperature ; Separators ; Soft and Granular Matter ; Spectrum analysis ; Synthesis ; Tensile strength</subject><ispartof>Polymer bulletin (Berlin, Germany), 2018-10, Vol.75 (10), p.4409-4428</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-d2dc64e4289928ed8828897d8cd982792a9668fe02a5088162fffdd4099146873</citedby><cites>FETCH-LOGICAL-c353t-d2dc64e4289928ed8828897d8cd982792a9668fe02a5088162fffdd4099146873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00289-018-2277-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917873688?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Moly, P. P.</creatorcontrib><creatorcontrib>Jeena, C. B.</creatorcontrib><creatorcontrib>Elsa, P. J.</creatorcontrib><creatorcontrib>Ambily, K. J.</creatorcontrib><creatorcontrib>Joy, V. T.</creatorcontrib><title>High performance polyvinyl alcohol/calcium titanate nanocomposite anion-exchange membranes as separators in redox flow batteries</title><title>Polymer bulletin (Berlin, Germany)</title><addtitle>Polym. Bull</addtitle><description>Low ionic conductivity and poor chemical stability are the two key parameters that limit the use of many anion-exchange membranes in electrochemical applications like rechargeable batteries and fuel cells. Herein we report a method for the synthesis of a high performance anion-exchange membrane fabricated by incorporating calcium titanate nanoparticles (CaTiO
3
) into polyvinyl alcohol (PVA) matrix. The CaTiO
3
was synthesized by a new co-precipitation method from a solution of two simple precursors, viz potassium titanyl oxalate and calcium chloride. The XRD data of the synthesized nanoparticles indicate a phase pure orthorhombic perovskite structure. Morphological features investigated with SEM and TEM studies, reveal that the CaTiO
3
is having spherical shape with a diameter of approximately 200 nm. The PVA/CaTiO
3
nanocomposite membranes were fabricated by solution casting method from a well dispersed suspension of CaTiO
3
in PVA and characterized by FT-IR spectroscopy, TGA, SEM, AC impedance analysis and tensile strength measurements. The membranes with 30 wt% CaTiO
3
content possess ionic conductivity of 66 mS cm
−1
at room temperature. The electrochemical performance of an all-iron redox flow cell was studied using galvanostatic charge–discharge tests using the above nanocomposite membrane as separator and the system exhibited a coulombic efficiency of 75% during the charge–discharge cycles.</description><subject>Anion exchanging</subject><subject>Batteries</subject><subject>Calcium chloride</subject><subject>Calcium titanate</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Complex Fluids and Microfluidics</subject><subject>Diameters</subject><subject>Dielectric properties</subject><subject>Discharge</subject><subject>Electrochemical analysis</subject><subject>Electron microscopes</subject><subject>Flow stability</subject><subject>Fuel cells</subject><subject>Infrared spectroscopy</subject><subject>Ion currents</subject><subject>Membranes</subject><subject>Nanocomposites</subject><subject>Nanocrystals</subject><subject>Nanoparticles</subject><subject>Organic Chemistry</subject><subject>Original Paper</subject><subject>Perovskite structure</subject><subject>Perovskites</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Polymers</subject><subject>Polyvinyl alcohol</subject><subject>Potassium</subject><subject>Rechargeable batteries</subject><subject>Room temperature</subject><subject>Separators</subject><subject>Soft and Granular Matter</subject><subject>Spectrum analysis</subject><subject>Synthesis</subject><subject>Tensile strength</subject><issn>0170-0839</issn><issn>1436-2449</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kEFLAzEQhYMoWKs_wFvAc2yS3WaToxS1QsGLnkOanW1TdpM12Wp786ebsoInTzMP3nvDfAjdMnrPKK1miVIuFaFMEs6rivAzNGFlIQgvS3WOJpRVlFBZqEt0ldKOZi0Em6DvpdtscQ-xCbEz3gLuQ3v8dP7YYtPasA3tzObF7Ts8uMF4MwD2xgcbuj4kl5XxLngCB7s1fgO4g24djYeETcIJehPNEGLCzuMIdTjgpg1feG2GAaKDdI0uGtMmuPmdU_T-9Pi2WJLV6_PL4mFFbDEvBlLz2ooSyvyk4hJqKbmUqqqlrZXkleJGCSEboNzMqZRM8KZp6rqkSrFSyKqYoruxt4_hYw9p0Luwjz6f1FyxKjuElNnFRpeNIaUIje6j60w8akb1CbQeQesMWp9Aa54zfMyk7M0E4l_z_6EfMlKDBw</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Moly, P. P.</creator><creator>Jeena, C. B.</creator><creator>Elsa, P. J.</creator><creator>Ambily, K. J.</creator><creator>Joy, V. T.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20181001</creationdate><title>High performance polyvinyl alcohol/calcium titanate nanocomposite anion-exchange membranes as separators in redox flow batteries</title><author>Moly, P. P. ; Jeena, C. B. ; Elsa, P. J. ; Ambily, K. J. ; Joy, V. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-d2dc64e4289928ed8828897d8cd982792a9668fe02a5088162fffdd4099146873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anion exchanging</topic><topic>Batteries</topic><topic>Calcium chloride</topic><topic>Calcium titanate</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Complex Fluids and Microfluidics</topic><topic>Diameters</topic><topic>Dielectric properties</topic><topic>Discharge</topic><topic>Electrochemical analysis</topic><topic>Electron microscopes</topic><topic>Flow stability</topic><topic>Fuel cells</topic><topic>Infrared spectroscopy</topic><topic>Ion currents</topic><topic>Membranes</topic><topic>Nanocomposites</topic><topic>Nanocrystals</topic><topic>Nanoparticles</topic><topic>Organic Chemistry</topic><topic>Original Paper</topic><topic>Perovskite structure</topic><topic>Perovskites</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Polymers</topic><topic>Polyvinyl alcohol</topic><topic>Potassium</topic><topic>Rechargeable batteries</topic><topic>Room temperature</topic><topic>Separators</topic><topic>Soft and Granular Matter</topic><topic>Spectrum analysis</topic><topic>Synthesis</topic><topic>Tensile strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moly, P. P.</creatorcontrib><creatorcontrib>Jeena, C. B.</creatorcontrib><creatorcontrib>Elsa, P. J.</creatorcontrib><creatorcontrib>Ambily, K. J.</creatorcontrib><creatorcontrib>Joy, V. T.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Polymer bulletin (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moly, P. P.</au><au>Jeena, C. B.</au><au>Elsa, P. J.</au><au>Ambily, K. J.</au><au>Joy, V. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High performance polyvinyl alcohol/calcium titanate nanocomposite anion-exchange membranes as separators in redox flow batteries</atitle><jtitle>Polymer bulletin (Berlin, Germany)</jtitle><stitle>Polym. Bull</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>75</volume><issue>10</issue><spage>4409</spage><epage>4428</epage><pages>4409-4428</pages><issn>0170-0839</issn><eissn>1436-2449</eissn><abstract>Low ionic conductivity and poor chemical stability are the two key parameters that limit the use of many anion-exchange membranes in electrochemical applications like rechargeable batteries and fuel cells. Herein we report a method for the synthesis of a high performance anion-exchange membrane fabricated by incorporating calcium titanate nanoparticles (CaTiO
3
) into polyvinyl alcohol (PVA) matrix. The CaTiO
3
was synthesized by a new co-precipitation method from a solution of two simple precursors, viz potassium titanyl oxalate and calcium chloride. The XRD data of the synthesized nanoparticles indicate a phase pure orthorhombic perovskite structure. Morphological features investigated with SEM and TEM studies, reveal that the CaTiO
3
is having spherical shape with a diameter of approximately 200 nm. The PVA/CaTiO
3
nanocomposite membranes were fabricated by solution casting method from a well dispersed suspension of CaTiO
3
in PVA and characterized by FT-IR spectroscopy, TGA, SEM, AC impedance analysis and tensile strength measurements. The membranes with 30 wt% CaTiO
3
content possess ionic conductivity of 66 mS cm
−1
at room temperature. The electrochemical performance of an all-iron redox flow cell was studied using galvanostatic charge–discharge tests using the above nanocomposite membrane as separator and the system exhibited a coulombic efficiency of 75% during the charge–discharge cycles.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00289-018-2277-2</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-0839 |
ispartof | Polymer bulletin (Berlin, Germany), 2018-10, Vol.75 (10), p.4409-4428 |
issn | 0170-0839 1436-2449 |
language | eng |
recordid | cdi_proquest_journals_2917873688 |
source | SpringerNature Journals; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Anion exchanging Batteries Calcium chloride Calcium titanate Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Complex Fluids and Microfluidics Diameters Dielectric properties Discharge Electrochemical analysis Electron microscopes Flow stability Fuel cells Infrared spectroscopy Ion currents Membranes Nanocomposites Nanocrystals Nanoparticles Organic Chemistry Original Paper Perovskite structure Perovskites Physical Chemistry Polymer Sciences Polymers Polyvinyl alcohol Potassium Rechargeable batteries Room temperature Separators Soft and Granular Matter Spectrum analysis Synthesis Tensile strength |
title | High performance polyvinyl alcohol/calcium titanate nanocomposite anion-exchange membranes as separators in redox flow batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A53%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20performance%20polyvinyl%20alcohol/calcium%20titanate%20nanocomposite%20anion-exchange%20membranes%20as%20separators%20in%20redox%20flow%20batteries&rft.jtitle=Polymer%20bulletin%20(Berlin,%20Germany)&rft.au=Moly,%20P.%20P.&rft.date=2018-10-01&rft.volume=75&rft.issue=10&rft.spage=4409&rft.epage=4428&rft.pages=4409-4428&rft.issn=0170-0839&rft.eissn=1436-2449&rft_id=info:doi/10.1007/s00289-018-2277-2&rft_dat=%3Cproquest_cross%3E2917873688%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917873688&rft_id=info:pmid/&rfr_iscdi=true |