Plasticized solid polymer electrolyte based on triblock copolymer poly(vinylidene chloride-co-acrylonitrile-co-methyl methacrylate) for magnesium ion batteries

Limited global resources of lithium lead to the consideration of magnesium ion batteries as potential energy storage devices. Magnesium ion batteries have potential for high energy density but require new types of electrode and electrolytes for practical applications. Solid polymer electrolytes offe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer bulletin (Berlin, Germany) Germany), 2021, Vol.78 (1), p.35-57
Hauptverfasser: Ponraj, T., Ramalingam, A., Selvasekarapandian, S., Srikumar, S. R., Manjuladevi, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 57
container_issue 1
container_start_page 35
container_title Polymer bulletin (Berlin, Germany)
container_volume 78
creator Ponraj, T.
Ramalingam, A.
Selvasekarapandian, S.
Srikumar, S. R.
Manjuladevi, R.
description Limited global resources of lithium lead to the consideration of magnesium ion batteries as potential energy storage devices. Magnesium ion batteries have potential for high energy density but require new types of electrode and electrolytes for practical applications. Solid polymer electrolytes offer the opportunity for increased safety and broader electrochemical stability relative to traditional electrolytes. Herein, we report the development of solid polymer electrolyte for magnesium ion batteries based on triblock copolymer poly(vinylidene chloride- co -acrylonitrile- co -methyl methacrylate) (poly(VdCl- co -AN- co -MMA)). The polymer electrolytes are prepared by solution-casting technique using poly(VdCl- co -AN- co -MMA) with various concentrations (10 wt%, 20 wt%, 30 wt%, and 40 wt%) of magnesium chloride (MgCl 2 ) salt. Among the prepared polymer electrolytes, the highest magnesium-ion-conducting polymer electrolyte is 70 wt% poly(VdCl- co -AN- co -MMA):30 wt% MgCl 2 polymer–salt composition by electrochemical impedance measurements, and the obtained value of ionic conductivity is found to be in the order of 10 −5 S cm −1 . Addition of plasticizer succinonitrile in various concentrations (0.1 wt%, 0.2 wt%, 0.3 wt% and 0.4 wt%) with the identified polymer electrolyte of highest conductivity shows increased values of conductivity up to the order of 10 −3 S cm −1 . Observable changes in crystalline/amorphous nature of the polymer are analyzed using X-ray diffraction pattern. Glass transition temperature of polymer electrolytes has been found using differential scanning calorimetric studies. Transference number measurements have been made to confirm the ionic conductivity. The electrochemical stability for highest conducting plasticized polymer electrolyte is obtained from linear sweep voltammetry as 3.3 V. A primary magnesium ion battery has been constructed with prepared electrolyte of highest conductivity, and its performance and discharge characteristics are also analyzed. The open-circuit voltage of 2.18 V is obtained with the constructed primary magnesium ion battery.
doi_str_mv 10.1007/s00289-019-03091-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917872654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917872654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-24a85afd89b62e5c2fbd174a23c1cb9a27b4071064c9c745fb3211ad75875c03</originalsourceid><addsrcrecordid>eNp9kc1OxCAUhYnRxHH0BVyRuNFFFWgp7dJM_EtMdDF7QuntDCMtIzAm9WV8VZkZjTsX5HC557s35CB0Tsk1JUTcBEJYVWeEppOTmmb8AE1okZcZK4r6EE0IFSQjVV4fo5MQViTVZUkn6OvVqhCNNp_Q4uCsafHa2bEHj8GCjj4VEXCjQuq7AUdvGuv0G9bu17fVyw8zjAmGAbBeWufTNdMuU9qP1g0mYXb30ENcjhZvZddTEa5w5zzu1WKAYDY9NmlNo2IEbyCcoqNO2QBnPzpF8_u7-ewxe355eJrdPmc652VMv1QVV11b1U3JgGvWNS0VhWK5prqpFRNNQQQlZaFrLQreNTmjVLWCV4Jrkk_RxX7s2rv3DYQoV27jh7RRspqKSrCSF8nF9i7tXQgeOrn2pld-lJTIbQ5yn4NMOchdDpInKN9DIZmHBfi_0f9Q348BkA8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917872654</pqid></control><display><type>article</type><title>Plasticized solid polymer electrolyte based on triblock copolymer poly(vinylidene chloride-co-acrylonitrile-co-methyl methacrylate) for magnesium ion batteries</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central</source><creator>Ponraj, T. ; Ramalingam, A. ; Selvasekarapandian, S. ; Srikumar, S. R. ; Manjuladevi, R.</creator><creatorcontrib>Ponraj, T. ; Ramalingam, A. ; Selvasekarapandian, S. ; Srikumar, S. R. ; Manjuladevi, R.</creatorcontrib><description>Limited global resources of lithium lead to the consideration of magnesium ion batteries as potential energy storage devices. Magnesium ion batteries have potential for high energy density but require new types of electrode and electrolytes for practical applications. Solid polymer electrolytes offer the opportunity for increased safety and broader electrochemical stability relative to traditional electrolytes. Herein, we report the development of solid polymer electrolyte for magnesium ion batteries based on triblock copolymer poly(vinylidene chloride- co -acrylonitrile- co -methyl methacrylate) (poly(VdCl- co -AN- co -MMA)). The polymer electrolytes are prepared by solution-casting technique using poly(VdCl- co -AN- co -MMA) with various concentrations (10 wt%, 20 wt%, 30 wt%, and 40 wt%) of magnesium chloride (MgCl 2 ) salt. Among the prepared polymer electrolytes, the highest magnesium-ion-conducting polymer electrolyte is 70 wt% poly(VdCl- co -AN- co -MMA):30 wt% MgCl 2 polymer–salt composition by electrochemical impedance measurements, and the obtained value of ionic conductivity is found to be in the order of 10 −5 S cm −1 . Addition of plasticizer succinonitrile in various concentrations (0.1 wt%, 0.2 wt%, 0.3 wt% and 0.4 wt%) with the identified polymer electrolyte of highest conductivity shows increased values of conductivity up to the order of 10 −3 S cm −1 . Observable changes in crystalline/amorphous nature of the polymer are analyzed using X-ray diffraction pattern. Glass transition temperature of polymer electrolytes has been found using differential scanning calorimetric studies. Transference number measurements have been made to confirm the ionic conductivity. The electrochemical stability for highest conducting plasticized polymer electrolyte is obtained from linear sweep voltammetry as 3.3 V. A primary magnesium ion battery has been constructed with prepared electrolyte of highest conductivity, and its performance and discharge characteristics are also analyzed. The open-circuit voltage of 2.18 V is obtained with the constructed primary magnesium ion battery.</description><identifier>ISSN: 0170-0839</identifier><identifier>EISSN: 1436-2449</identifier><identifier>DOI: 10.1007/s00289-019-03091-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Batteries ; Block copolymers ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Chloride ; Complex Fluids and Microfluidics ; Conducting polymers ; Copolymers ; Diffraction patterns ; Electrodes ; Electrolytes ; Energy storage ; Glass transition temperature ; Ion currents ; Lithium ; Magnesium ; Magnesium chloride ; Molten salt electrolytes ; Open circuit voltage ; Organic Chemistry ; Original Paper ; Physical Chemistry ; Polymer Sciences ; Polymers ; Polymethyl methacrylate ; Potential energy ; Soft and Granular Matter ; Solid electrolytes ; Solvents ; Stability ; Succinonitrile ; Temperature ; Vinylidene ; Voltammetry</subject><ispartof>Polymer bulletin (Berlin, Germany), 2021, Vol.78 (1), p.35-57</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-24a85afd89b62e5c2fbd174a23c1cb9a27b4071064c9c745fb3211ad75875c03</citedby><cites>FETCH-LOGICAL-c356t-24a85afd89b62e5c2fbd174a23c1cb9a27b4071064c9c745fb3211ad75875c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00289-019-03091-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2917872654?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Ponraj, T.</creatorcontrib><creatorcontrib>Ramalingam, A.</creatorcontrib><creatorcontrib>Selvasekarapandian, S.</creatorcontrib><creatorcontrib>Srikumar, S. R.</creatorcontrib><creatorcontrib>Manjuladevi, R.</creatorcontrib><title>Plasticized solid polymer electrolyte based on triblock copolymer poly(vinylidene chloride-co-acrylonitrile-co-methyl methacrylate) for magnesium ion batteries</title><title>Polymer bulletin (Berlin, Germany)</title><addtitle>Polym. Bull</addtitle><description>Limited global resources of lithium lead to the consideration of magnesium ion batteries as potential energy storage devices. Magnesium ion batteries have potential for high energy density but require new types of electrode and electrolytes for practical applications. Solid polymer electrolytes offer the opportunity for increased safety and broader electrochemical stability relative to traditional electrolytes. Herein, we report the development of solid polymer electrolyte for magnesium ion batteries based on triblock copolymer poly(vinylidene chloride- co -acrylonitrile- co -methyl methacrylate) (poly(VdCl- co -AN- co -MMA)). The polymer electrolytes are prepared by solution-casting technique using poly(VdCl- co -AN- co -MMA) with various concentrations (10 wt%, 20 wt%, 30 wt%, and 40 wt%) of magnesium chloride (MgCl 2 ) salt. Among the prepared polymer electrolytes, the highest magnesium-ion-conducting polymer electrolyte is 70 wt% poly(VdCl- co -AN- co -MMA):30 wt% MgCl 2 polymer–salt composition by electrochemical impedance measurements, and the obtained value of ionic conductivity is found to be in the order of 10 −5 S cm −1 . Addition of plasticizer succinonitrile in various concentrations (0.1 wt%, 0.2 wt%, 0.3 wt% and 0.4 wt%) with the identified polymer electrolyte of highest conductivity shows increased values of conductivity up to the order of 10 −3 S cm −1 . Observable changes in crystalline/amorphous nature of the polymer are analyzed using X-ray diffraction pattern. Glass transition temperature of polymer electrolytes has been found using differential scanning calorimetric studies. Transference number measurements have been made to confirm the ionic conductivity. The electrochemical stability for highest conducting plasticized polymer electrolyte is obtained from linear sweep voltammetry as 3.3 V. A primary magnesium ion battery has been constructed with prepared electrolyte of highest conductivity, and its performance and discharge characteristics are also analyzed. The open-circuit voltage of 2.18 V is obtained with the constructed primary magnesium ion battery.</description><subject>Batteries</subject><subject>Block copolymers</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chloride</subject><subject>Complex Fluids and Microfluidics</subject><subject>Conducting polymers</subject><subject>Copolymers</subject><subject>Diffraction patterns</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Energy storage</subject><subject>Glass transition temperature</subject><subject>Ion currents</subject><subject>Lithium</subject><subject>Magnesium</subject><subject>Magnesium chloride</subject><subject>Molten salt electrolytes</subject><subject>Open circuit voltage</subject><subject>Organic Chemistry</subject><subject>Original Paper</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Polymers</subject><subject>Polymethyl methacrylate</subject><subject>Potential energy</subject><subject>Soft and Granular Matter</subject><subject>Solid electrolytes</subject><subject>Solvents</subject><subject>Stability</subject><subject>Succinonitrile</subject><subject>Temperature</subject><subject>Vinylidene</subject><subject>Voltammetry</subject><issn>0170-0839</issn><issn>1436-2449</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kc1OxCAUhYnRxHH0BVyRuNFFFWgp7dJM_EtMdDF7QuntDCMtIzAm9WV8VZkZjTsX5HC557s35CB0Tsk1JUTcBEJYVWeEppOTmmb8AE1okZcZK4r6EE0IFSQjVV4fo5MQViTVZUkn6OvVqhCNNp_Q4uCsafHa2bEHj8GCjj4VEXCjQuq7AUdvGuv0G9bu17fVyw8zjAmGAbBeWufTNdMuU9qP1g0mYXb30ENcjhZvZddTEa5w5zzu1WKAYDY9NmlNo2IEbyCcoqNO2QBnPzpF8_u7-ewxe355eJrdPmc652VMv1QVV11b1U3JgGvWNS0VhWK5prqpFRNNQQQlZaFrLQreNTmjVLWCV4Jrkk_RxX7s2rv3DYQoV27jh7RRspqKSrCSF8nF9i7tXQgeOrn2pld-lJTIbQ5yn4NMOchdDpInKN9DIZmHBfi_0f9Q348BkA8</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Ponraj, T.</creator><creator>Ramalingam, A.</creator><creator>Selvasekarapandian, S.</creator><creator>Srikumar, S. R.</creator><creator>Manjuladevi, R.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>2021</creationdate><title>Plasticized solid polymer electrolyte based on triblock copolymer poly(vinylidene chloride-co-acrylonitrile-co-methyl methacrylate) for magnesium ion batteries</title><author>Ponraj, T. ; Ramalingam, A. ; Selvasekarapandian, S. ; Srikumar, S. R. ; Manjuladevi, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-24a85afd89b62e5c2fbd174a23c1cb9a27b4071064c9c745fb3211ad75875c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Batteries</topic><topic>Block copolymers</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chloride</topic><topic>Complex Fluids and Microfluidics</topic><topic>Conducting polymers</topic><topic>Copolymers</topic><topic>Diffraction patterns</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Energy storage</topic><topic>Glass transition temperature</topic><topic>Ion currents</topic><topic>Lithium</topic><topic>Magnesium</topic><topic>Magnesium chloride</topic><topic>Molten salt electrolytes</topic><topic>Open circuit voltage</topic><topic>Organic Chemistry</topic><topic>Original Paper</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Polymers</topic><topic>Polymethyl methacrylate</topic><topic>Potential energy</topic><topic>Soft and Granular Matter</topic><topic>Solid electrolytes</topic><topic>Solvents</topic><topic>Stability</topic><topic>Succinonitrile</topic><topic>Temperature</topic><topic>Vinylidene</topic><topic>Voltammetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ponraj, T.</creatorcontrib><creatorcontrib>Ramalingam, A.</creatorcontrib><creatorcontrib>Selvasekarapandian, S.</creatorcontrib><creatorcontrib>Srikumar, S. R.</creatorcontrib><creatorcontrib>Manjuladevi, R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Polymer bulletin (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ponraj, T.</au><au>Ramalingam, A.</au><au>Selvasekarapandian, S.</au><au>Srikumar, S. R.</au><au>Manjuladevi, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasticized solid polymer electrolyte based on triblock copolymer poly(vinylidene chloride-co-acrylonitrile-co-methyl methacrylate) for magnesium ion batteries</atitle><jtitle>Polymer bulletin (Berlin, Germany)</jtitle><stitle>Polym. Bull</stitle><date>2021</date><risdate>2021</risdate><volume>78</volume><issue>1</issue><spage>35</spage><epage>57</epage><pages>35-57</pages><issn>0170-0839</issn><eissn>1436-2449</eissn><abstract>Limited global resources of lithium lead to the consideration of magnesium ion batteries as potential energy storage devices. Magnesium ion batteries have potential for high energy density but require new types of electrode and electrolytes for practical applications. Solid polymer electrolytes offer the opportunity for increased safety and broader electrochemical stability relative to traditional electrolytes. Herein, we report the development of solid polymer electrolyte for magnesium ion batteries based on triblock copolymer poly(vinylidene chloride- co -acrylonitrile- co -methyl methacrylate) (poly(VdCl- co -AN- co -MMA)). The polymer electrolytes are prepared by solution-casting technique using poly(VdCl- co -AN- co -MMA) with various concentrations (10 wt%, 20 wt%, 30 wt%, and 40 wt%) of magnesium chloride (MgCl 2 ) salt. Among the prepared polymer electrolytes, the highest magnesium-ion-conducting polymer electrolyte is 70 wt% poly(VdCl- co -AN- co -MMA):30 wt% MgCl 2 polymer–salt composition by electrochemical impedance measurements, and the obtained value of ionic conductivity is found to be in the order of 10 −5 S cm −1 . Addition of plasticizer succinonitrile in various concentrations (0.1 wt%, 0.2 wt%, 0.3 wt% and 0.4 wt%) with the identified polymer electrolyte of highest conductivity shows increased values of conductivity up to the order of 10 −3 S cm −1 . Observable changes in crystalline/amorphous nature of the polymer are analyzed using X-ray diffraction pattern. Glass transition temperature of polymer electrolytes has been found using differential scanning calorimetric studies. Transference number measurements have been made to confirm the ionic conductivity. The electrochemical stability for highest conducting plasticized polymer electrolyte is obtained from linear sweep voltammetry as 3.3 V. A primary magnesium ion battery has been constructed with prepared electrolyte of highest conductivity, and its performance and discharge characteristics are also analyzed. The open-circuit voltage of 2.18 V is obtained with the constructed primary magnesium ion battery.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00289-019-03091-5</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0170-0839
ispartof Polymer bulletin (Berlin, Germany), 2021, Vol.78 (1), p.35-57
issn 0170-0839
1436-2449
language eng
recordid cdi_proquest_journals_2917872654
source Springer Nature - Complete Springer Journals; ProQuest Central
subjects Batteries
Block copolymers
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Chloride
Complex Fluids and Microfluidics
Conducting polymers
Copolymers
Diffraction patterns
Electrodes
Electrolytes
Energy storage
Glass transition temperature
Ion currents
Lithium
Magnesium
Magnesium chloride
Molten salt electrolytes
Open circuit voltage
Organic Chemistry
Original Paper
Physical Chemistry
Polymer Sciences
Polymers
Polymethyl methacrylate
Potential energy
Soft and Granular Matter
Solid electrolytes
Solvents
Stability
Succinonitrile
Temperature
Vinylidene
Voltammetry
title Plasticized solid polymer electrolyte based on triblock copolymer poly(vinylidene chloride-co-acrylonitrile-co-methyl methacrylate) for magnesium ion batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T13%3A15%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasticized%20solid%20polymer%20electrolyte%20based%20on%20triblock%20copolymer%20poly(vinylidene%20chloride-co-acrylonitrile-co-methyl%20methacrylate)%20for%20magnesium%20ion%20batteries&rft.jtitle=Polymer%20bulletin%20(Berlin,%20Germany)&rft.au=Ponraj,%20T.&rft.date=2021&rft.volume=78&rft.issue=1&rft.spage=35&rft.epage=57&rft.pages=35-57&rft.issn=0170-0839&rft.eissn=1436-2449&rft_id=info:doi/10.1007/s00289-019-03091-5&rft_dat=%3Cproquest_cross%3E2917872654%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917872654&rft_id=info:pmid/&rfr_iscdi=true