Ultrafast cathode characteristics of a nano-V2(PO4)3 carbon composite for rechargeable magnesium batteries

Magnesium rechargeable batteries (Mg batteries) are currently attracting attention as high-energy and low-cost energy storage devices that can replace lithium-ion batteries. Within this context, V2(PO4)3 is a promising material for high-voltage and high-rate cathodes for Mg batteries. However, the s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2024-01, Vol.12 (4), p.2081-2092
Hauptverfasser: Harada, Yuta, Yu Chikaoka, Kasai, Marina, Koizumi, Kyoya, Iwama, Etsuro, Okita, Naohisa, Orikasa, Yuki, Naoi, Wako, Naoi, Katsuhiko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2092
container_issue 4
container_start_page 2081
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 12
creator Harada, Yuta
Yu Chikaoka
Kasai, Marina
Koizumi, Kyoya
Iwama, Etsuro
Okita, Naohisa
Orikasa, Yuki
Naoi, Wako
Naoi, Katsuhiko
description Magnesium rechargeable batteries (Mg batteries) are currently attracting attention as high-energy and low-cost energy storage devices that can replace lithium-ion batteries. Within this context, V2(PO4)3 is a promising material for high-voltage and high-rate cathodes for Mg batteries. However, the strong electrostatic attraction between Mg2+and anions degrades the Mg2+ diffusion in the solid-state of the cathode, which hinders the room-temperature operation. Furthermore, the detailed charge–discharge mechanism of V2(PO4)3 during Mg2+ insertion/extraction is not yet fully understood. Here, we synthesized V2(PO4)3 nanocrystals (50 nm), which are highly dispersed and directly embedded in conductive carbon, for realizing ultrafast cathode reaction for Mg batteries. The V2(PO4)3/carbon composite exhibited a high capacity of 210 mA h g−1 (at 1C-rate) and 110 mA h g−1 (at 10C-rate, i.e., under ultrafast conditions) during Mg2+ insertion/extraction even at room temperature. The phase transition and valence change of vanadium in MgxV2(PO4)3 were evaluated by in situ X-ray diffraction (XRD) and X-ray absorption fine structure (XAFS) analyses. Both in situ measurements revealed that Mg2+ insertion/extraction of MgxV2(PO4)3 (0.5 ≤ x ≤ 1.3) proceeds reversibly with a valence change of vanadium through a solid-solution reaction, unlike the Li+ insertion/extraction of LixV2(PO4)3 (1 ≤ x ≤ 3) via a two-phase reaction. Our findings provide a promising synthesis method of V2(PO4)3 for ultrafast and high-voltage cathodes for practical Mg batteries and experimental evidence for a unique charge–discharge mechanism in MgxV2(PO4)3.
doi_str_mv 10.1039/d3ta05912j
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2917725500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917725500</sourcerecordid><originalsourceid>FETCH-LOGICAL-j249t-f2748ad74dd703ec7376433315b9331468e36a667abcf035fe82797455eeb803</originalsourceid><addsrcrecordid>eNo9Tj1PwzAUtBBIVKULv8ASCwwBx5_xiCooSJXKUFirF-e5TZTExXb_P6lA3HDvhrt7R8htyR5LJuxTIzIwZUveXZAZZ4oVRlp9-a-r6posUurYhIoxbe2MdJ99juAhZeogH0KD1B0ggssY25Rbl2jwFOgIYyi--P3HRj6IyRrrMFIXhmNIbUbqQ6QRz8k9Qt0jHWA_YmpPA60hn7sw3ZArD33Cxd-dk-3ry3b5Vqw3q_fl87rouLS58HxaCo2RTWOYQGeE0VIIUaraTix1hUKD1gZq55lQHiturJFKIdYVE3Ny91t7jOH7hCnvunCK4_Rxx21pDFeKMfED43NZXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917725500</pqid></control><display><type>article</type><title>Ultrafast cathode characteristics of a nano-V2(PO4)3 carbon composite for rechargeable magnesium batteries</title><source>Royal Society Of Chemistry Journals</source><creator>Harada, Yuta ; Yu Chikaoka ; Kasai, Marina ; Koizumi, Kyoya ; Iwama, Etsuro ; Okita, Naohisa ; Orikasa, Yuki ; Naoi, Wako ; Naoi, Katsuhiko</creator><creatorcontrib>Harada, Yuta ; Yu Chikaoka ; Kasai, Marina ; Koizumi, Kyoya ; Iwama, Etsuro ; Okita, Naohisa ; Orikasa, Yuki ; Naoi, Wako ; Naoi, Katsuhiko</creatorcontrib><description>Magnesium rechargeable batteries (Mg batteries) are currently attracting attention as high-energy and low-cost energy storage devices that can replace lithium-ion batteries. Within this context, V2(PO4)3 is a promising material for high-voltage and high-rate cathodes for Mg batteries. However, the strong electrostatic attraction between Mg2+and anions degrades the Mg2+ diffusion in the solid-state of the cathode, which hinders the room-temperature operation. Furthermore, the detailed charge–discharge mechanism of V2(PO4)3 during Mg2+ insertion/extraction is not yet fully understood. Here, we synthesized V2(PO4)3 nanocrystals (50 nm), which are highly dispersed and directly embedded in conductive carbon, for realizing ultrafast cathode reaction for Mg batteries. The V2(PO4)3/carbon composite exhibited a high capacity of 210 mA h g−1 (at 1C-rate) and 110 mA h g−1 (at 10C-rate, i.e., under ultrafast conditions) during Mg2+ insertion/extraction even at room temperature. The phase transition and valence change of vanadium in MgxV2(PO4)3 were evaluated by in situ X-ray diffraction (XRD) and X-ray absorption fine structure (XAFS) analyses. Both in situ measurements revealed that Mg2+ insertion/extraction of MgxV2(PO4)3 (0.5 ≤ x ≤ 1.3) proceeds reversibly with a valence change of vanadium through a solid-solution reaction, unlike the Li+ insertion/extraction of LixV2(PO4)3 (1 ≤ x ≤ 3) via a two-phase reaction. Our findings provide a promising synthesis method of V2(PO4)3 for ultrafast and high-voltage cathodes for practical Mg batteries and experimental evidence for a unique charge–discharge mechanism in MgxV2(PO4)3.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d3ta05912j</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Anions ; Batteries ; Carbon ; Cathodes ; Discharge ; Energy storage ; Fine structure ; High voltages ; In situ measurement ; Insertion ; Lithium ; Lithium-ion batteries ; Magnesium ; Phase transitions ; Rechargeable batteries ; Room temperature ; Solid solutions ; Ultrastructure ; Vanadium ; Voltage ; X ray absorption ; X-ray diffraction</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2024-01, Vol.12 (4), p.2081-2092</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Harada, Yuta</creatorcontrib><creatorcontrib>Yu Chikaoka</creatorcontrib><creatorcontrib>Kasai, Marina</creatorcontrib><creatorcontrib>Koizumi, Kyoya</creatorcontrib><creatorcontrib>Iwama, Etsuro</creatorcontrib><creatorcontrib>Okita, Naohisa</creatorcontrib><creatorcontrib>Orikasa, Yuki</creatorcontrib><creatorcontrib>Naoi, Wako</creatorcontrib><creatorcontrib>Naoi, Katsuhiko</creatorcontrib><title>Ultrafast cathode characteristics of a nano-V2(PO4)3 carbon composite for rechargeable magnesium batteries</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Magnesium rechargeable batteries (Mg batteries) are currently attracting attention as high-energy and low-cost energy storage devices that can replace lithium-ion batteries. Within this context, V2(PO4)3 is a promising material for high-voltage and high-rate cathodes for Mg batteries. However, the strong electrostatic attraction between Mg2+and anions degrades the Mg2+ diffusion in the solid-state of the cathode, which hinders the room-temperature operation. Furthermore, the detailed charge–discharge mechanism of V2(PO4)3 during Mg2+ insertion/extraction is not yet fully understood. Here, we synthesized V2(PO4)3 nanocrystals (50 nm), which are highly dispersed and directly embedded in conductive carbon, for realizing ultrafast cathode reaction for Mg batteries. The V2(PO4)3/carbon composite exhibited a high capacity of 210 mA h g−1 (at 1C-rate) and 110 mA h g−1 (at 10C-rate, i.e., under ultrafast conditions) during Mg2+ insertion/extraction even at room temperature. The phase transition and valence change of vanadium in MgxV2(PO4)3 were evaluated by in situ X-ray diffraction (XRD) and X-ray absorption fine structure (XAFS) analyses. Both in situ measurements revealed that Mg2+ insertion/extraction of MgxV2(PO4)3 (0.5 ≤ x ≤ 1.3) proceeds reversibly with a valence change of vanadium through a solid-solution reaction, unlike the Li+ insertion/extraction of LixV2(PO4)3 (1 ≤ x ≤ 3) via a two-phase reaction. Our findings provide a promising synthesis method of V2(PO4)3 for ultrafast and high-voltage cathodes for practical Mg batteries and experimental evidence for a unique charge–discharge mechanism in MgxV2(PO4)3.</description><subject>Anions</subject><subject>Batteries</subject><subject>Carbon</subject><subject>Cathodes</subject><subject>Discharge</subject><subject>Energy storage</subject><subject>Fine structure</subject><subject>High voltages</subject><subject>In situ measurement</subject><subject>Insertion</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Magnesium</subject><subject>Phase transitions</subject><subject>Rechargeable batteries</subject><subject>Room temperature</subject><subject>Solid solutions</subject><subject>Ultrastructure</subject><subject>Vanadium</subject><subject>Voltage</subject><subject>X ray absorption</subject><subject>X-ray diffraction</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9Tj1PwzAUtBBIVKULv8ASCwwBx5_xiCooSJXKUFirF-e5TZTExXb_P6lA3HDvhrt7R8htyR5LJuxTIzIwZUveXZAZZ4oVRlp9-a-r6posUurYhIoxbe2MdJ99juAhZeogH0KD1B0ggssY25Rbl2jwFOgIYyi--P3HRj6IyRrrMFIXhmNIbUbqQ6QRz8k9Qt0jHWA_YmpPA60hn7sw3ZArD33Cxd-dk-3ry3b5Vqw3q_fl87rouLS58HxaCo2RTWOYQGeE0VIIUaraTix1hUKD1gZq55lQHiturJFKIdYVE3Ny91t7jOH7hCnvunCK4_Rxx21pDFeKMfED43NZXw</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Harada, Yuta</creator><creator>Yu Chikaoka</creator><creator>Kasai, Marina</creator><creator>Koizumi, Kyoya</creator><creator>Iwama, Etsuro</creator><creator>Okita, Naohisa</creator><creator>Orikasa, Yuki</creator><creator>Naoi, Wako</creator><creator>Naoi, Katsuhiko</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20240101</creationdate><title>Ultrafast cathode characteristics of a nano-V2(PO4)3 carbon composite for rechargeable magnesium batteries</title><author>Harada, Yuta ; Yu Chikaoka ; Kasai, Marina ; Koizumi, Kyoya ; Iwama, Etsuro ; Okita, Naohisa ; Orikasa, Yuki ; Naoi, Wako ; Naoi, Katsuhiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j249t-f2748ad74dd703ec7376433315b9331468e36a667abcf035fe82797455eeb803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anions</topic><topic>Batteries</topic><topic>Carbon</topic><topic>Cathodes</topic><topic>Discharge</topic><topic>Energy storage</topic><topic>Fine structure</topic><topic>High voltages</topic><topic>In situ measurement</topic><topic>Insertion</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Magnesium</topic><topic>Phase transitions</topic><topic>Rechargeable batteries</topic><topic>Room temperature</topic><topic>Solid solutions</topic><topic>Ultrastructure</topic><topic>Vanadium</topic><topic>Voltage</topic><topic>X ray absorption</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harada, Yuta</creatorcontrib><creatorcontrib>Yu Chikaoka</creatorcontrib><creatorcontrib>Kasai, Marina</creatorcontrib><creatorcontrib>Koizumi, Kyoya</creatorcontrib><creatorcontrib>Iwama, Etsuro</creatorcontrib><creatorcontrib>Okita, Naohisa</creatorcontrib><creatorcontrib>Orikasa, Yuki</creatorcontrib><creatorcontrib>Naoi, Wako</creatorcontrib><creatorcontrib>Naoi, Katsuhiko</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harada, Yuta</au><au>Yu Chikaoka</au><au>Kasai, Marina</au><au>Koizumi, Kyoya</au><au>Iwama, Etsuro</au><au>Okita, Naohisa</au><au>Orikasa, Yuki</au><au>Naoi, Wako</au><au>Naoi, Katsuhiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrafast cathode characteristics of a nano-V2(PO4)3 carbon composite for rechargeable magnesium batteries</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>12</volume><issue>4</issue><spage>2081</spage><epage>2092</epage><pages>2081-2092</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Magnesium rechargeable batteries (Mg batteries) are currently attracting attention as high-energy and low-cost energy storage devices that can replace lithium-ion batteries. Within this context, V2(PO4)3 is a promising material for high-voltage and high-rate cathodes for Mg batteries. However, the strong electrostatic attraction between Mg2+and anions degrades the Mg2+ diffusion in the solid-state of the cathode, which hinders the room-temperature operation. Furthermore, the detailed charge–discharge mechanism of V2(PO4)3 during Mg2+ insertion/extraction is not yet fully understood. Here, we synthesized V2(PO4)3 nanocrystals (50 nm), which are highly dispersed and directly embedded in conductive carbon, for realizing ultrafast cathode reaction for Mg batteries. The V2(PO4)3/carbon composite exhibited a high capacity of 210 mA h g−1 (at 1C-rate) and 110 mA h g−1 (at 10C-rate, i.e., under ultrafast conditions) during Mg2+ insertion/extraction even at room temperature. The phase transition and valence change of vanadium in MgxV2(PO4)3 were evaluated by in situ X-ray diffraction (XRD) and X-ray absorption fine structure (XAFS) analyses. Both in situ measurements revealed that Mg2+ insertion/extraction of MgxV2(PO4)3 (0.5 ≤ x ≤ 1.3) proceeds reversibly with a valence change of vanadium through a solid-solution reaction, unlike the Li+ insertion/extraction of LixV2(PO4)3 (1 ≤ x ≤ 3) via a two-phase reaction. Our findings provide a promising synthesis method of V2(PO4)3 for ultrafast and high-voltage cathodes for practical Mg batteries and experimental evidence for a unique charge–discharge mechanism in MgxV2(PO4)3.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3ta05912j</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2024-01, Vol.12 (4), p.2081-2092
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2917725500
source Royal Society Of Chemistry Journals
subjects Anions
Batteries
Carbon
Cathodes
Discharge
Energy storage
Fine structure
High voltages
In situ measurement
Insertion
Lithium
Lithium-ion batteries
Magnesium
Phase transitions
Rechargeable batteries
Room temperature
Solid solutions
Ultrastructure
Vanadium
Voltage
X ray absorption
X-ray diffraction
title Ultrafast cathode characteristics of a nano-V2(PO4)3 carbon composite for rechargeable magnesium batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A45%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrafast%20cathode%20characteristics%20of%20a%20nano-V2(PO4)3%20carbon%20composite%20for%20rechargeable%20magnesium%20batteries&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Harada,%20Yuta&rft.date=2024-01-01&rft.volume=12&rft.issue=4&rft.spage=2081&rft.epage=2092&rft.pages=2081-2092&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d3ta05912j&rft_dat=%3Cproquest%3E2917725500%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917725500&rft_id=info:pmid/&rfr_iscdi=true