Lattice engineered nanoscale Fe0 for selective reductions

Achieving rapid and highly selective chemical reductions using Fe0 nanomaterials for water treatment remains challenging. Here lattice Ni and S were impregnated into crystalline Fe0 with controllable lattice strain and S speciation via a one-step procedure, overcoming the reactivity–selectivity–stab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature water 2024-01, Vol.2 (1), p.84-92
Hauptverfasser: Hu, Xiaohong, Chen, Chaohuang, Chen, Du, Noël, Vincent, Oji, Hiroshi, Ghoshal, Subhasis, Lowry, Gregory V., Tratnyek, Paul G., Lin, Daohui, Zhu, Lizhong, Xu, Jiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 92
container_issue 1
container_start_page 84
container_title Nature water
container_volume 2
creator Hu, Xiaohong
Chen, Chaohuang
Chen, Du
Noël, Vincent
Oji, Hiroshi
Ghoshal, Subhasis
Lowry, Gregory V.
Tratnyek, Paul G.
Lin, Daohui
Zhu, Lizhong
Xu, Jiang
description Achieving rapid and highly selective chemical reductions using Fe0 nanomaterials for water treatment remains challenging. Here lattice Ni and S were impregnated into crystalline Fe0 with controllable lattice strain and S speciation via a one-step procedure, overcoming the reactivity–selectivity–stability trade-off. Chemoselective dehalogenation and hydrogenation at a remarkable activity (up to 956-fold higher than for unmodified Fe0) outcompete H2 evolution for >90% electrons from lattice-doped Fe0, also offering high stability in air and water. This mainly results from the modulations of materials’ lattice strain (contracted or tensile) and S speciation (FeS or FeS2) by lattice Ni and the promotions of electron transfer and hydrophobicity by lattice S. This work demonstrates the ability to control the local microenvironment in the Fe0 crystalline structure via lattice engineering, and the tunable geometric and electronic properties constitute a promising platform for the rational design of metallic nanomaterials with robust performance in selective reductions.Fe0-enabled nanotechnologies for the reduction of refractory organic contaminants have the limitations of poor selectivity and low stability during water treatment. A lattice doping technique based on Lewis acid–base chemistry to incorporate lattice Ni and S into crystalline Fe0 can achieve rapid and highly selective chemical reductions.
doi_str_mv 10.1038/s44221-023-00175-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917707728</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917707728</sourcerecordid><originalsourceid>FETCH-LOGICAL-c205t-f1e3c93029c56d7d5d5fbe1fcbe5abc1054a92099114eaa99a0f71cb789a88993</originalsourceid><addsrcrecordid>eNpNkEFLxDAUhIMouKz7BzwVPEffS5pNcpTFVaHgRc8hTV-kS23XpBX891brYU8zMMMMfIxdI9wiSHOXy1II5CAkB0CtuDpjK6El8i2Y8vzEX7JNzgcAEEYgqnLFbOXHsQ1UUP_e9kSJmqL3_ZCD76jYExRxSEWmjsLYflEx59Pshj5fsYvou0ybf12zt_3D6-6JVy-Pz7v7igcBauQRSQYrQdigto1uVKNiTRhDTcrXAUGV3gqwFrEk7631EDWGWhvrjbFWrtnNsntMw-dEeXSHYUr9fOmERa1Ba2HmllhaIQ05J4rumNoPn74dgvul5BZKbqbk_ig5JX8Au0JZaA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917707728</pqid></control><display><type>article</type><title>Lattice engineered nanoscale Fe0 for selective reductions</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Hu, Xiaohong ; Chen, Chaohuang ; Chen, Du ; Noël, Vincent ; Oji, Hiroshi ; Ghoshal, Subhasis ; Lowry, Gregory V. ; Tratnyek, Paul G. ; Lin, Daohui ; Zhu, Lizhong ; Xu, Jiang</creator><creatorcontrib>Hu, Xiaohong ; Chen, Chaohuang ; Chen, Du ; Noël, Vincent ; Oji, Hiroshi ; Ghoshal, Subhasis ; Lowry, Gregory V. ; Tratnyek, Paul G. ; Lin, Daohui ; Zhu, Lizhong ; Xu, Jiang</creatorcontrib><description>Achieving rapid and highly selective chemical reductions using Fe0 nanomaterials for water treatment remains challenging. Here lattice Ni and S were impregnated into crystalline Fe0 with controllable lattice strain and S speciation via a one-step procedure, overcoming the reactivity–selectivity–stability trade-off. Chemoselective dehalogenation and hydrogenation at a remarkable activity (up to 956-fold higher than for unmodified Fe0) outcompete H2 evolution for &gt;90% electrons from lattice-doped Fe0, also offering high stability in air and water. This mainly results from the modulations of materials’ lattice strain (contracted or tensile) and S speciation (FeS or FeS2) by lattice Ni and the promotions of electron transfer and hydrophobicity by lattice S. This work demonstrates the ability to control the local microenvironment in the Fe0 crystalline structure via lattice engineering, and the tunable geometric and electronic properties constitute a promising platform for the rational design of metallic nanomaterials with robust performance in selective reductions.Fe0-enabled nanotechnologies for the reduction of refractory organic contaminants have the limitations of poor selectivity and low stability during water treatment. A lattice doping technique based on Lewis acid–base chemistry to incorporate lattice Ni and S into crystalline Fe0 can achieve rapid and highly selective chemical reductions.</description><identifier>ISSN: 2731-6084</identifier><identifier>EISSN: 2731-6084</identifier><identifier>DOI: 10.1038/s44221-023-00175-5</identifier><language>eng</language><publisher>London: Nature Publishing Group</publisher><subject>Acids ; Contaminants ; Controllability ; Dehalogenation ; Electron transfer ; Electrons ; Hydrogen evolution ; Hydrogenation ; Hydrophobicity ; Incorporation ; Iron sulfides ; Lattice strain ; Lewis acid ; Microenvironments ; Morphology ; Nanomaterials ; Nanoparticles ; Nanotechnology ; Organic contaminants ; Pyrite ; Reactivity ; Selectivity ; Speciation ; Stability ; Water ; Water treatment ; Wavelet transforms</subject><ispartof>Nature water, 2024-01, Vol.2 (1), p.84-92</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c205t-f1e3c93029c56d7d5d5fbe1fcbe5abc1054a92099114eaa99a0f71cb789a88993</citedby><cites>FETCH-LOGICAL-c205t-f1e3c93029c56d7d5d5fbe1fcbe5abc1054a92099114eaa99a0f71cb789a88993</cites><orcidid>0009-0002-2400-5693 ; 0000-0002-1183-1390 ; 0000-0001-9968-6150 ; 0000-0001-8818-6417 ; 0000-0003-0369-4848</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2917707728?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21369,27903,27904,33723,43784</link.rule.ids></links><search><creatorcontrib>Hu, Xiaohong</creatorcontrib><creatorcontrib>Chen, Chaohuang</creatorcontrib><creatorcontrib>Chen, Du</creatorcontrib><creatorcontrib>Noël, Vincent</creatorcontrib><creatorcontrib>Oji, Hiroshi</creatorcontrib><creatorcontrib>Ghoshal, Subhasis</creatorcontrib><creatorcontrib>Lowry, Gregory V.</creatorcontrib><creatorcontrib>Tratnyek, Paul G.</creatorcontrib><creatorcontrib>Lin, Daohui</creatorcontrib><creatorcontrib>Zhu, Lizhong</creatorcontrib><creatorcontrib>Xu, Jiang</creatorcontrib><title>Lattice engineered nanoscale Fe0 for selective reductions</title><title>Nature water</title><description>Achieving rapid and highly selective chemical reductions using Fe0 nanomaterials for water treatment remains challenging. Here lattice Ni and S were impregnated into crystalline Fe0 with controllable lattice strain and S speciation via a one-step procedure, overcoming the reactivity–selectivity–stability trade-off. Chemoselective dehalogenation and hydrogenation at a remarkable activity (up to 956-fold higher than for unmodified Fe0) outcompete H2 evolution for &gt;90% electrons from lattice-doped Fe0, also offering high stability in air and water. This mainly results from the modulations of materials’ lattice strain (contracted or tensile) and S speciation (FeS or FeS2) by lattice Ni and the promotions of electron transfer and hydrophobicity by lattice S. This work demonstrates the ability to control the local microenvironment in the Fe0 crystalline structure via lattice engineering, and the tunable geometric and electronic properties constitute a promising platform for the rational design of metallic nanomaterials with robust performance in selective reductions.Fe0-enabled nanotechnologies for the reduction of refractory organic contaminants have the limitations of poor selectivity and low stability during water treatment. A lattice doping technique based on Lewis acid–base chemistry to incorporate lattice Ni and S into crystalline Fe0 can achieve rapid and highly selective chemical reductions.</description><subject>Acids</subject><subject>Contaminants</subject><subject>Controllability</subject><subject>Dehalogenation</subject><subject>Electron transfer</subject><subject>Electrons</subject><subject>Hydrogen evolution</subject><subject>Hydrogenation</subject><subject>Hydrophobicity</subject><subject>Incorporation</subject><subject>Iron sulfides</subject><subject>Lattice strain</subject><subject>Lewis acid</subject><subject>Microenvironments</subject><subject>Morphology</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Organic contaminants</subject><subject>Pyrite</subject><subject>Reactivity</subject><subject>Selectivity</subject><subject>Speciation</subject><subject>Stability</subject><subject>Water</subject><subject>Water treatment</subject><subject>Wavelet transforms</subject><issn>2731-6084</issn><issn>2731-6084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkEFLxDAUhIMouKz7BzwVPEffS5pNcpTFVaHgRc8hTV-kS23XpBX891brYU8zMMMMfIxdI9wiSHOXy1II5CAkB0CtuDpjK6El8i2Y8vzEX7JNzgcAEEYgqnLFbOXHsQ1UUP_e9kSJmqL3_ZCD76jYExRxSEWmjsLYflEx59Pshj5fsYvou0ybf12zt_3D6-6JVy-Pz7v7igcBauQRSQYrQdigto1uVKNiTRhDTcrXAUGV3gqwFrEk7631EDWGWhvrjbFWrtnNsntMw-dEeXSHYUr9fOmERa1Ba2HmllhaIQ05J4rumNoPn74dgvul5BZKbqbk_ig5JX8Au0JZaA</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Hu, Xiaohong</creator><creator>Chen, Chaohuang</creator><creator>Chen, Du</creator><creator>Noël, Vincent</creator><creator>Oji, Hiroshi</creator><creator>Ghoshal, Subhasis</creator><creator>Lowry, Gregory V.</creator><creator>Tratnyek, Paul G.</creator><creator>Lin, Daohui</creator><creator>Zhu, Lizhong</creator><creator>Xu, Jiang</creator><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7X2</scope><scope>7XB</scope><scope>88J</scope><scope>8BJ</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M2R</scope><scope>M7P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0009-0002-2400-5693</orcidid><orcidid>https://orcid.org/0000-0002-1183-1390</orcidid><orcidid>https://orcid.org/0000-0001-9968-6150</orcidid><orcidid>https://orcid.org/0000-0001-8818-6417</orcidid><orcidid>https://orcid.org/0000-0003-0369-4848</orcidid></search><sort><creationdate>20240101</creationdate><title>Lattice engineered nanoscale Fe0 for selective reductions</title><author>Hu, Xiaohong ; Chen, Chaohuang ; Chen, Du ; Noël, Vincent ; Oji, Hiroshi ; Ghoshal, Subhasis ; Lowry, Gregory V. ; Tratnyek, Paul G. ; Lin, Daohui ; Zhu, Lizhong ; Xu, Jiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c205t-f1e3c93029c56d7d5d5fbe1fcbe5abc1054a92099114eaa99a0f71cb789a88993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acids</topic><topic>Contaminants</topic><topic>Controllability</topic><topic>Dehalogenation</topic><topic>Electron transfer</topic><topic>Electrons</topic><topic>Hydrogen evolution</topic><topic>Hydrogenation</topic><topic>Hydrophobicity</topic><topic>Incorporation</topic><topic>Iron sulfides</topic><topic>Lattice strain</topic><topic>Lewis acid</topic><topic>Microenvironments</topic><topic>Morphology</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Organic contaminants</topic><topic>Pyrite</topic><topic>Reactivity</topic><topic>Selectivity</topic><topic>Speciation</topic><topic>Stability</topic><topic>Water</topic><topic>Water treatment</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Xiaohong</creatorcontrib><creatorcontrib>Chen, Chaohuang</creatorcontrib><creatorcontrib>Chen, Du</creatorcontrib><creatorcontrib>Noël, Vincent</creatorcontrib><creatorcontrib>Oji, Hiroshi</creatorcontrib><creatorcontrib>Ghoshal, Subhasis</creatorcontrib><creatorcontrib>Lowry, Gregory V.</creatorcontrib><creatorcontrib>Tratnyek, Paul G.</creatorcontrib><creatorcontrib>Lin, Daohui</creatorcontrib><creatorcontrib>Zhu, Lizhong</creatorcontrib><creatorcontrib>Xu, Jiang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Social Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Nature water</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Xiaohong</au><au>Chen, Chaohuang</au><au>Chen, Du</au><au>Noël, Vincent</au><au>Oji, Hiroshi</au><au>Ghoshal, Subhasis</au><au>Lowry, Gregory V.</au><au>Tratnyek, Paul G.</au><au>Lin, Daohui</au><au>Zhu, Lizhong</au><au>Xu, Jiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lattice engineered nanoscale Fe0 for selective reductions</atitle><jtitle>Nature water</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>2</volume><issue>1</issue><spage>84</spage><epage>92</epage><pages>84-92</pages><issn>2731-6084</issn><eissn>2731-6084</eissn><abstract>Achieving rapid and highly selective chemical reductions using Fe0 nanomaterials for water treatment remains challenging. Here lattice Ni and S were impregnated into crystalline Fe0 with controllable lattice strain and S speciation via a one-step procedure, overcoming the reactivity–selectivity–stability trade-off. Chemoselective dehalogenation and hydrogenation at a remarkable activity (up to 956-fold higher than for unmodified Fe0) outcompete H2 evolution for &gt;90% electrons from lattice-doped Fe0, also offering high stability in air and water. This mainly results from the modulations of materials’ lattice strain (contracted or tensile) and S speciation (FeS or FeS2) by lattice Ni and the promotions of electron transfer and hydrophobicity by lattice S. This work demonstrates the ability to control the local microenvironment in the Fe0 crystalline structure via lattice engineering, and the tunable geometric and electronic properties constitute a promising platform for the rational design of metallic nanomaterials with robust performance in selective reductions.Fe0-enabled nanotechnologies for the reduction of refractory organic contaminants have the limitations of poor selectivity and low stability during water treatment. A lattice doping technique based on Lewis acid–base chemistry to incorporate lattice Ni and S into crystalline Fe0 can achieve rapid and highly selective chemical reductions.</abstract><cop>London</cop><pub>Nature Publishing Group</pub><doi>10.1038/s44221-023-00175-5</doi><tpages>9</tpages><orcidid>https://orcid.org/0009-0002-2400-5693</orcidid><orcidid>https://orcid.org/0000-0002-1183-1390</orcidid><orcidid>https://orcid.org/0000-0001-9968-6150</orcidid><orcidid>https://orcid.org/0000-0001-8818-6417</orcidid><orcidid>https://orcid.org/0000-0003-0369-4848</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2731-6084
ispartof Nature water, 2024-01, Vol.2 (1), p.84-92
issn 2731-6084
2731-6084
language eng
recordid cdi_proquest_journals_2917707728
source Nature Journals Online; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Acids
Contaminants
Controllability
Dehalogenation
Electron transfer
Electrons
Hydrogen evolution
Hydrogenation
Hydrophobicity
Incorporation
Iron sulfides
Lattice strain
Lewis acid
Microenvironments
Morphology
Nanomaterials
Nanoparticles
Nanotechnology
Organic contaminants
Pyrite
Reactivity
Selectivity
Speciation
Stability
Water
Water treatment
Wavelet transforms
title Lattice engineered nanoscale Fe0 for selective reductions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A38%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lattice%20engineered%20nanoscale%20Fe0%20for%20selective%20reductions&rft.jtitle=Nature%20water&rft.au=Hu,%20Xiaohong&rft.date=2024-01-01&rft.volume=2&rft.issue=1&rft.spage=84&rft.epage=92&rft.pages=84-92&rft.issn=2731-6084&rft.eissn=2731-6084&rft_id=info:doi/10.1038/s44221-023-00175-5&rft_dat=%3Cproquest_cross%3E2917707728%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917707728&rft_id=info:pmid/&rfr_iscdi=true