Generation of 3D molecules in pockets via a language model
Generative models for molecules based on sequential line notation (for example, the simplified molecular-input line-entry system) or graph representation have attracted an increasing interest in the field of structure-based drug design, but they struggle to capture important three-dimensional (3D) s...
Gespeichert in:
Veröffentlicht in: | Nature machine intelligence 2024-01, Vol.6 (1), p.62-73 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 73 |
---|---|
container_issue | 1 |
container_start_page | 62 |
container_title | Nature machine intelligence |
container_volume | 6 |
creator | Feng, Wei Wang, Lvwei Lin, Zaiyun Zhu, Yanhao Wang, Han Dong, Jianqiang Bai, Rong Wang, Huting Zhou, Jielong Peng, Wei Huang, Bo Zhou, Wenbiao |
description | Generative models for molecules based on sequential line notation (for example, the simplified molecular-input line-entry system) or graph representation have attracted an increasing interest in the field of structure-based drug design, but they struggle to capture important three-dimensional (3D) spatial interactions and often produce undesirable molecular structures. To address these challenges, we introduce Lingo3DMol, a pocket-based 3D molecule generation method that combines language models and geometric deep learning technology. A new molecular representation, the fragment-based simplified molecular-input line-entry system with local and global coordinates, was developed to assist the model in learning molecular topologies and atomic spatial positions. Additionally, we trained a separate non-covalent interaction predictor to provide essential binding pattern information for the generative model. Lingo3DMol can efficiently traverse drug-like chemical spaces, preventing the formation of unusual structures. The Directory of Useful Decoys-Enhanced dataset was used for evaluation. Lingo3DMol outperformed state-of-the-art methods in terms of drug likeness, synthetic accessibility, pocket binding mode and molecule generation speed.
Drug design has recently seen immense improvements in computational methods, but models can still struggle generalizing across binding pockets. Feng and colleagues combine a language model with geometric deep learning to provide efficient generation of potential new drugs. |
doi_str_mv | 10.1038/s42256-023-00775-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917706768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917706768</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-b90b0126788605fe510db5859b7affd40171754d7af580236b8bf6e8c8ca2b6a3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouKz7BTwFPEcnSfOn3mTVVVjwoueQtEnp2m3XpBX89kYr6MnTzMDvvcc8hM4pXFLg-ioVjAlJgHECoJQg8ggtmGCMCM3L4z_7KVqltAMARotCQLFA1xvf-2jHdujxEDC_xfuh89XU-YTbHh-G6tWPCb-3Flvc2b6ZbOMzU_vuDJ0E2yW_-plL9HJ_97x-INunzeP6ZksqLvlIXAkOKJNKawkieEGhdkKL0ikbQl0AVVSJos6X0PkH6bQL0utKV5Y5afkSXcy-hzi8TT6NZjdMsc-RhpVUKZBK6kyxmarikFL0wRxiu7fxw1AwXzWZuSaTI8x3TUZmEZ9FKcN94-Ov9T-qT5-5aHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917706768</pqid></control><display><type>article</type><title>Generation of 3D molecules in pockets via a language model</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Feng, Wei ; Wang, Lvwei ; Lin, Zaiyun ; Zhu, Yanhao ; Wang, Han ; Dong, Jianqiang ; Bai, Rong ; Wang, Huting ; Zhou, Jielong ; Peng, Wei ; Huang, Bo ; Zhou, Wenbiao</creator><creatorcontrib>Feng, Wei ; Wang, Lvwei ; Lin, Zaiyun ; Zhu, Yanhao ; Wang, Han ; Dong, Jianqiang ; Bai, Rong ; Wang, Huting ; Zhou, Jielong ; Peng, Wei ; Huang, Bo ; Zhou, Wenbiao</creatorcontrib><description>Generative models for molecules based on sequential line notation (for example, the simplified molecular-input line-entry system) or graph representation have attracted an increasing interest in the field of structure-based drug design, but they struggle to capture important three-dimensional (3D) spatial interactions and often produce undesirable molecular structures. To address these challenges, we introduce Lingo3DMol, a pocket-based 3D molecule generation method that combines language models and geometric deep learning technology. A new molecular representation, the fragment-based simplified molecular-input line-entry system with local and global coordinates, was developed to assist the model in learning molecular topologies and atomic spatial positions. Additionally, we trained a separate non-covalent interaction predictor to provide essential binding pattern information for the generative model. Lingo3DMol can efficiently traverse drug-like chemical spaces, preventing the formation of unusual structures. The Directory of Useful Decoys-Enhanced dataset was used for evaluation. Lingo3DMol outperformed state-of-the-art methods in terms of drug likeness, synthetic accessibility, pocket binding mode and molecule generation speed.
Drug design has recently seen immense improvements in computational methods, but models can still struggle generalizing across binding pockets. Feng and colleagues combine a language model with geometric deep learning to provide efficient generation of potential new drugs.</description><identifier>ISSN: 2522-5839</identifier><identifier>EISSN: 2522-5839</identifier><identifier>DOI: 10.1038/s42256-023-00775-6</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/154 ; 639/705/258 ; Artificial intelligence ; Binding ; Datasets ; Decoys ; Deep learning ; Engineering ; Graphical representations ; Kinases ; Ligands ; Methods ; Molecular structure ; Proteins ; Topology</subject><ispartof>Nature machine intelligence, 2024-01, Vol.6 (1), p.62-73</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-b90b0126788605fe510db5859b7affd40171754d7af580236b8bf6e8c8ca2b6a3</citedby><cites>FETCH-LOGICAL-c363t-b90b0126788605fe510db5859b7affd40171754d7af580236b8bf6e8c8ca2b6a3</cites><orcidid>0009-0007-1220-1458 ; 0000-0001-9282-2105 ; 0009-0004-8509-2385 ; 0000-0002-7168-3676 ; 0000-0003-3822-9110</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s42256-023-00775-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s42256-023-00775-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Feng, Wei</creatorcontrib><creatorcontrib>Wang, Lvwei</creatorcontrib><creatorcontrib>Lin, Zaiyun</creatorcontrib><creatorcontrib>Zhu, Yanhao</creatorcontrib><creatorcontrib>Wang, Han</creatorcontrib><creatorcontrib>Dong, Jianqiang</creatorcontrib><creatorcontrib>Bai, Rong</creatorcontrib><creatorcontrib>Wang, Huting</creatorcontrib><creatorcontrib>Zhou, Jielong</creatorcontrib><creatorcontrib>Peng, Wei</creatorcontrib><creatorcontrib>Huang, Bo</creatorcontrib><creatorcontrib>Zhou, Wenbiao</creatorcontrib><title>Generation of 3D molecules in pockets via a language model</title><title>Nature machine intelligence</title><addtitle>Nat Mach Intell</addtitle><description>Generative models for molecules based on sequential line notation (for example, the simplified molecular-input line-entry system) or graph representation have attracted an increasing interest in the field of structure-based drug design, but they struggle to capture important three-dimensional (3D) spatial interactions and often produce undesirable molecular structures. To address these challenges, we introduce Lingo3DMol, a pocket-based 3D molecule generation method that combines language models and geometric deep learning technology. A new molecular representation, the fragment-based simplified molecular-input line-entry system with local and global coordinates, was developed to assist the model in learning molecular topologies and atomic spatial positions. Additionally, we trained a separate non-covalent interaction predictor to provide essential binding pattern information for the generative model. Lingo3DMol can efficiently traverse drug-like chemical spaces, preventing the formation of unusual structures. The Directory of Useful Decoys-Enhanced dataset was used for evaluation. Lingo3DMol outperformed state-of-the-art methods in terms of drug likeness, synthetic accessibility, pocket binding mode and molecule generation speed.
Drug design has recently seen immense improvements in computational methods, but models can still struggle generalizing across binding pockets. Feng and colleagues combine a language model with geometric deep learning to provide efficient generation of potential new drugs.</description><subject>631/154</subject><subject>639/705/258</subject><subject>Artificial intelligence</subject><subject>Binding</subject><subject>Datasets</subject><subject>Decoys</subject><subject>Deep learning</subject><subject>Engineering</subject><subject>Graphical representations</subject><subject>Kinases</subject><subject>Ligands</subject><subject>Methods</subject><subject>Molecular structure</subject><subject>Proteins</subject><subject>Topology</subject><issn>2522-5839</issn><issn>2522-5839</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9LxDAQxYMouKz7BTwFPEcnSfOn3mTVVVjwoueQtEnp2m3XpBX89kYr6MnTzMDvvcc8hM4pXFLg-ioVjAlJgHECoJQg8ggtmGCMCM3L4z_7KVqltAMARotCQLFA1xvf-2jHdujxEDC_xfuh89XU-YTbHh-G6tWPCb-3Flvc2b6ZbOMzU_vuDJ0E2yW_-plL9HJ_97x-INunzeP6ZksqLvlIXAkOKJNKawkieEGhdkKL0ikbQl0AVVSJos6X0PkH6bQL0utKV5Y5afkSXcy-hzi8TT6NZjdMsc-RhpVUKZBK6kyxmarikFL0wRxiu7fxw1AwXzWZuSaTI8x3TUZmEZ9FKcN94-Ov9T-qT5-5aHQ</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Feng, Wei</creator><creator>Wang, Lvwei</creator><creator>Lin, Zaiyun</creator><creator>Zhu, Yanhao</creator><creator>Wang, Han</creator><creator>Dong, Jianqiang</creator><creator>Bai, Rong</creator><creator>Wang, Huting</creator><creator>Zhou, Jielong</creator><creator>Peng, Wei</creator><creator>Huang, Bo</creator><creator>Zhou, Wenbiao</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0009-0007-1220-1458</orcidid><orcidid>https://orcid.org/0000-0001-9282-2105</orcidid><orcidid>https://orcid.org/0009-0004-8509-2385</orcidid><orcidid>https://orcid.org/0000-0002-7168-3676</orcidid><orcidid>https://orcid.org/0000-0003-3822-9110</orcidid></search><sort><creationdate>20240101</creationdate><title>Generation of 3D molecules in pockets via a language model</title><author>Feng, Wei ; Wang, Lvwei ; Lin, Zaiyun ; Zhu, Yanhao ; Wang, Han ; Dong, Jianqiang ; Bai, Rong ; Wang, Huting ; Zhou, Jielong ; Peng, Wei ; Huang, Bo ; Zhou, Wenbiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-b90b0126788605fe510db5859b7affd40171754d7af580236b8bf6e8c8ca2b6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>631/154</topic><topic>639/705/258</topic><topic>Artificial intelligence</topic><topic>Binding</topic><topic>Datasets</topic><topic>Decoys</topic><topic>Deep learning</topic><topic>Engineering</topic><topic>Graphical representations</topic><topic>Kinases</topic><topic>Ligands</topic><topic>Methods</topic><topic>Molecular structure</topic><topic>Proteins</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Wei</creatorcontrib><creatorcontrib>Wang, Lvwei</creatorcontrib><creatorcontrib>Lin, Zaiyun</creatorcontrib><creatorcontrib>Zhu, Yanhao</creatorcontrib><creatorcontrib>Wang, Han</creatorcontrib><creatorcontrib>Dong, Jianqiang</creatorcontrib><creatorcontrib>Bai, Rong</creatorcontrib><creatorcontrib>Wang, Huting</creatorcontrib><creatorcontrib>Zhou, Jielong</creatorcontrib><creatorcontrib>Peng, Wei</creatorcontrib><creatorcontrib>Huang, Bo</creatorcontrib><creatorcontrib>Zhou, Wenbiao</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Wei</au><au>Wang, Lvwei</au><au>Lin, Zaiyun</au><au>Zhu, Yanhao</au><au>Wang, Han</au><au>Dong, Jianqiang</au><au>Bai, Rong</au><au>Wang, Huting</au><au>Zhou, Jielong</au><au>Peng, Wei</au><au>Huang, Bo</au><au>Zhou, Wenbiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generation of 3D molecules in pockets via a language model</atitle><jtitle>Nature machine intelligence</jtitle><stitle>Nat Mach Intell</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>6</volume><issue>1</issue><spage>62</spage><epage>73</epage><pages>62-73</pages><issn>2522-5839</issn><eissn>2522-5839</eissn><abstract>Generative models for molecules based on sequential line notation (for example, the simplified molecular-input line-entry system) or graph representation have attracted an increasing interest in the field of structure-based drug design, but they struggle to capture important three-dimensional (3D) spatial interactions and often produce undesirable molecular structures. To address these challenges, we introduce Lingo3DMol, a pocket-based 3D molecule generation method that combines language models and geometric deep learning technology. A new molecular representation, the fragment-based simplified molecular-input line-entry system with local and global coordinates, was developed to assist the model in learning molecular topologies and atomic spatial positions. Additionally, we trained a separate non-covalent interaction predictor to provide essential binding pattern information for the generative model. Lingo3DMol can efficiently traverse drug-like chemical spaces, preventing the formation of unusual structures. The Directory of Useful Decoys-Enhanced dataset was used for evaluation. Lingo3DMol outperformed state-of-the-art methods in terms of drug likeness, synthetic accessibility, pocket binding mode and molecule generation speed.
Drug design has recently seen immense improvements in computational methods, but models can still struggle generalizing across binding pockets. Feng and colleagues combine a language model with geometric deep learning to provide efficient generation of potential new drugs.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s42256-023-00775-6</doi><tpages>12</tpages><orcidid>https://orcid.org/0009-0007-1220-1458</orcidid><orcidid>https://orcid.org/0000-0001-9282-2105</orcidid><orcidid>https://orcid.org/0009-0004-8509-2385</orcidid><orcidid>https://orcid.org/0000-0002-7168-3676</orcidid><orcidid>https://orcid.org/0000-0003-3822-9110</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2522-5839 |
ispartof | Nature machine intelligence, 2024-01, Vol.6 (1), p.62-73 |
issn | 2522-5839 2522-5839 |
language | eng |
recordid | cdi_proquest_journals_2917706768 |
source | Nature; SpringerLink Journals - AutoHoldings |
subjects | 631/154 639/705/258 Artificial intelligence Binding Datasets Decoys Deep learning Engineering Graphical representations Kinases Ligands Methods Molecular structure Proteins Topology |
title | Generation of 3D molecules in pockets via a language model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T11%3A30%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generation%20of%203D%20molecules%20in%20pockets%20via%20a%20language%20model&rft.jtitle=Nature%20machine%20intelligence&rft.au=Feng,%20Wei&rft.date=2024-01-01&rft.volume=6&rft.issue=1&rft.spage=62&rft.epage=73&rft.pages=62-73&rft.issn=2522-5839&rft.eissn=2522-5839&rft_id=info:doi/10.1038/s42256-023-00775-6&rft_dat=%3Cproquest_cross%3E2917706768%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917706768&rft_id=info:pmid/&rfr_iscdi=true |