Generation of 3D molecules in pockets via a language model

Generative models for molecules based on sequential line notation (for example, the simplified molecular-input line-entry system) or graph representation have attracted an increasing interest in the field of structure-based drug design, but they struggle to capture important three-dimensional (3D) s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature machine intelligence 2024-01, Vol.6 (1), p.62-73
Hauptverfasser: Feng, Wei, Wang, Lvwei, Lin, Zaiyun, Zhu, Yanhao, Wang, Han, Dong, Jianqiang, Bai, Rong, Wang, Huting, Zhou, Jielong, Peng, Wei, Huang, Bo, Zhou, Wenbiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 73
container_issue 1
container_start_page 62
container_title Nature machine intelligence
container_volume 6
creator Feng, Wei
Wang, Lvwei
Lin, Zaiyun
Zhu, Yanhao
Wang, Han
Dong, Jianqiang
Bai, Rong
Wang, Huting
Zhou, Jielong
Peng, Wei
Huang, Bo
Zhou, Wenbiao
description Generative models for molecules based on sequential line notation (for example, the simplified molecular-input line-entry system) or graph representation have attracted an increasing interest in the field of structure-based drug design, but they struggle to capture important three-dimensional (3D) spatial interactions and often produce undesirable molecular structures. To address these challenges, we introduce Lingo3DMol, a pocket-based 3D molecule generation method that combines language models and geometric deep learning technology. A new molecular representation, the fragment-based simplified molecular-input line-entry system with local and global coordinates, was developed to assist the model in learning molecular topologies and atomic spatial positions. Additionally, we trained a separate non-covalent interaction predictor to provide essential binding pattern information for the generative model. Lingo3DMol can efficiently traverse drug-like chemical spaces, preventing the formation of unusual structures. The Directory of Useful Decoys-Enhanced dataset was used for evaluation. Lingo3DMol outperformed state-of-the-art methods in terms of drug likeness, synthetic accessibility, pocket binding mode and molecule generation speed. Drug design has recently seen immense improvements in computational methods, but models can still struggle generalizing across binding pockets. Feng and colleagues combine a language model with geometric deep learning to provide efficient generation of potential new drugs.
doi_str_mv 10.1038/s42256-023-00775-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917706768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917706768</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-b90b0126788605fe510db5859b7affd40171754d7af580236b8bf6e8c8ca2b6a3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouKz7BTwFPEcnSfOn3mTVVVjwoueQtEnp2m3XpBX89kYr6MnTzMDvvcc8hM4pXFLg-ioVjAlJgHECoJQg8ggtmGCMCM3L4z_7KVqltAMARotCQLFA1xvf-2jHdujxEDC_xfuh89XU-YTbHh-G6tWPCb-3Flvc2b6ZbOMzU_vuDJ0E2yW_-plL9HJ_97x-INunzeP6ZksqLvlIXAkOKJNKawkieEGhdkKL0ikbQl0AVVSJos6X0PkH6bQL0utKV5Y5afkSXcy-hzi8TT6NZjdMsc-RhpVUKZBK6kyxmarikFL0wRxiu7fxw1AwXzWZuSaTI8x3TUZmEZ9FKcN94-Ov9T-qT5-5aHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917706768</pqid></control><display><type>article</type><title>Generation of 3D molecules in pockets via a language model</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Feng, Wei ; Wang, Lvwei ; Lin, Zaiyun ; Zhu, Yanhao ; Wang, Han ; Dong, Jianqiang ; Bai, Rong ; Wang, Huting ; Zhou, Jielong ; Peng, Wei ; Huang, Bo ; Zhou, Wenbiao</creator><creatorcontrib>Feng, Wei ; Wang, Lvwei ; Lin, Zaiyun ; Zhu, Yanhao ; Wang, Han ; Dong, Jianqiang ; Bai, Rong ; Wang, Huting ; Zhou, Jielong ; Peng, Wei ; Huang, Bo ; Zhou, Wenbiao</creatorcontrib><description>Generative models for molecules based on sequential line notation (for example, the simplified molecular-input line-entry system) or graph representation have attracted an increasing interest in the field of structure-based drug design, but they struggle to capture important three-dimensional (3D) spatial interactions and often produce undesirable molecular structures. To address these challenges, we introduce Lingo3DMol, a pocket-based 3D molecule generation method that combines language models and geometric deep learning technology. A new molecular representation, the fragment-based simplified molecular-input line-entry system with local and global coordinates, was developed to assist the model in learning molecular topologies and atomic spatial positions. Additionally, we trained a separate non-covalent interaction predictor to provide essential binding pattern information for the generative model. Lingo3DMol can efficiently traverse drug-like chemical spaces, preventing the formation of unusual structures. The Directory of Useful Decoys-Enhanced dataset was used for evaluation. Lingo3DMol outperformed state-of-the-art methods in terms of drug likeness, synthetic accessibility, pocket binding mode and molecule generation speed. Drug design has recently seen immense improvements in computational methods, but models can still struggle generalizing across binding pockets. Feng and colleagues combine a language model with geometric deep learning to provide efficient generation of potential new drugs.</description><identifier>ISSN: 2522-5839</identifier><identifier>EISSN: 2522-5839</identifier><identifier>DOI: 10.1038/s42256-023-00775-6</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/154 ; 639/705/258 ; Artificial intelligence ; Binding ; Datasets ; Decoys ; Deep learning ; Engineering ; Graphical representations ; Kinases ; Ligands ; Methods ; Molecular structure ; Proteins ; Topology</subject><ispartof>Nature machine intelligence, 2024-01, Vol.6 (1), p.62-73</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-b90b0126788605fe510db5859b7affd40171754d7af580236b8bf6e8c8ca2b6a3</citedby><cites>FETCH-LOGICAL-c363t-b90b0126788605fe510db5859b7affd40171754d7af580236b8bf6e8c8ca2b6a3</cites><orcidid>0009-0007-1220-1458 ; 0000-0001-9282-2105 ; 0009-0004-8509-2385 ; 0000-0002-7168-3676 ; 0000-0003-3822-9110</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s42256-023-00775-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s42256-023-00775-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Feng, Wei</creatorcontrib><creatorcontrib>Wang, Lvwei</creatorcontrib><creatorcontrib>Lin, Zaiyun</creatorcontrib><creatorcontrib>Zhu, Yanhao</creatorcontrib><creatorcontrib>Wang, Han</creatorcontrib><creatorcontrib>Dong, Jianqiang</creatorcontrib><creatorcontrib>Bai, Rong</creatorcontrib><creatorcontrib>Wang, Huting</creatorcontrib><creatorcontrib>Zhou, Jielong</creatorcontrib><creatorcontrib>Peng, Wei</creatorcontrib><creatorcontrib>Huang, Bo</creatorcontrib><creatorcontrib>Zhou, Wenbiao</creatorcontrib><title>Generation of 3D molecules in pockets via a language model</title><title>Nature machine intelligence</title><addtitle>Nat Mach Intell</addtitle><description>Generative models for molecules based on sequential line notation (for example, the simplified molecular-input line-entry system) or graph representation have attracted an increasing interest in the field of structure-based drug design, but they struggle to capture important three-dimensional (3D) spatial interactions and often produce undesirable molecular structures. To address these challenges, we introduce Lingo3DMol, a pocket-based 3D molecule generation method that combines language models and geometric deep learning technology. A new molecular representation, the fragment-based simplified molecular-input line-entry system with local and global coordinates, was developed to assist the model in learning molecular topologies and atomic spatial positions. Additionally, we trained a separate non-covalent interaction predictor to provide essential binding pattern information for the generative model. Lingo3DMol can efficiently traverse drug-like chemical spaces, preventing the formation of unusual structures. The Directory of Useful Decoys-Enhanced dataset was used for evaluation. Lingo3DMol outperformed state-of-the-art methods in terms of drug likeness, synthetic accessibility, pocket binding mode and molecule generation speed. Drug design has recently seen immense improvements in computational methods, but models can still struggle generalizing across binding pockets. Feng and colleagues combine a language model with geometric deep learning to provide efficient generation of potential new drugs.</description><subject>631/154</subject><subject>639/705/258</subject><subject>Artificial intelligence</subject><subject>Binding</subject><subject>Datasets</subject><subject>Decoys</subject><subject>Deep learning</subject><subject>Engineering</subject><subject>Graphical representations</subject><subject>Kinases</subject><subject>Ligands</subject><subject>Methods</subject><subject>Molecular structure</subject><subject>Proteins</subject><subject>Topology</subject><issn>2522-5839</issn><issn>2522-5839</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9LxDAQxYMouKz7BTwFPEcnSfOn3mTVVVjwoueQtEnp2m3XpBX89kYr6MnTzMDvvcc8hM4pXFLg-ioVjAlJgHECoJQg8ggtmGCMCM3L4z_7KVqltAMARotCQLFA1xvf-2jHdujxEDC_xfuh89XU-YTbHh-G6tWPCb-3Flvc2b6ZbOMzU_vuDJ0E2yW_-plL9HJ_97x-INunzeP6ZksqLvlIXAkOKJNKawkieEGhdkKL0ikbQl0AVVSJos6X0PkH6bQL0utKV5Y5afkSXcy-hzi8TT6NZjdMsc-RhpVUKZBK6kyxmarikFL0wRxiu7fxw1AwXzWZuSaTI8x3TUZmEZ9FKcN94-Ov9T-qT5-5aHQ</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Feng, Wei</creator><creator>Wang, Lvwei</creator><creator>Lin, Zaiyun</creator><creator>Zhu, Yanhao</creator><creator>Wang, Han</creator><creator>Dong, Jianqiang</creator><creator>Bai, Rong</creator><creator>Wang, Huting</creator><creator>Zhou, Jielong</creator><creator>Peng, Wei</creator><creator>Huang, Bo</creator><creator>Zhou, Wenbiao</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0009-0007-1220-1458</orcidid><orcidid>https://orcid.org/0000-0001-9282-2105</orcidid><orcidid>https://orcid.org/0009-0004-8509-2385</orcidid><orcidid>https://orcid.org/0000-0002-7168-3676</orcidid><orcidid>https://orcid.org/0000-0003-3822-9110</orcidid></search><sort><creationdate>20240101</creationdate><title>Generation of 3D molecules in pockets via a language model</title><author>Feng, Wei ; Wang, Lvwei ; Lin, Zaiyun ; Zhu, Yanhao ; Wang, Han ; Dong, Jianqiang ; Bai, Rong ; Wang, Huting ; Zhou, Jielong ; Peng, Wei ; Huang, Bo ; Zhou, Wenbiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-b90b0126788605fe510db5859b7affd40171754d7af580236b8bf6e8c8ca2b6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>631/154</topic><topic>639/705/258</topic><topic>Artificial intelligence</topic><topic>Binding</topic><topic>Datasets</topic><topic>Decoys</topic><topic>Deep learning</topic><topic>Engineering</topic><topic>Graphical representations</topic><topic>Kinases</topic><topic>Ligands</topic><topic>Methods</topic><topic>Molecular structure</topic><topic>Proteins</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Wei</creatorcontrib><creatorcontrib>Wang, Lvwei</creatorcontrib><creatorcontrib>Lin, Zaiyun</creatorcontrib><creatorcontrib>Zhu, Yanhao</creatorcontrib><creatorcontrib>Wang, Han</creatorcontrib><creatorcontrib>Dong, Jianqiang</creatorcontrib><creatorcontrib>Bai, Rong</creatorcontrib><creatorcontrib>Wang, Huting</creatorcontrib><creatorcontrib>Zhou, Jielong</creatorcontrib><creatorcontrib>Peng, Wei</creatorcontrib><creatorcontrib>Huang, Bo</creatorcontrib><creatorcontrib>Zhou, Wenbiao</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Wei</au><au>Wang, Lvwei</au><au>Lin, Zaiyun</au><au>Zhu, Yanhao</au><au>Wang, Han</au><au>Dong, Jianqiang</au><au>Bai, Rong</au><au>Wang, Huting</au><au>Zhou, Jielong</au><au>Peng, Wei</au><au>Huang, Bo</au><au>Zhou, Wenbiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generation of 3D molecules in pockets via a language model</atitle><jtitle>Nature machine intelligence</jtitle><stitle>Nat Mach Intell</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>6</volume><issue>1</issue><spage>62</spage><epage>73</epage><pages>62-73</pages><issn>2522-5839</issn><eissn>2522-5839</eissn><abstract>Generative models for molecules based on sequential line notation (for example, the simplified molecular-input line-entry system) or graph representation have attracted an increasing interest in the field of structure-based drug design, but they struggle to capture important three-dimensional (3D) spatial interactions and often produce undesirable molecular structures. To address these challenges, we introduce Lingo3DMol, a pocket-based 3D molecule generation method that combines language models and geometric deep learning technology. A new molecular representation, the fragment-based simplified molecular-input line-entry system with local and global coordinates, was developed to assist the model in learning molecular topologies and atomic spatial positions. Additionally, we trained a separate non-covalent interaction predictor to provide essential binding pattern information for the generative model. Lingo3DMol can efficiently traverse drug-like chemical spaces, preventing the formation of unusual structures. The Directory of Useful Decoys-Enhanced dataset was used for evaluation. Lingo3DMol outperformed state-of-the-art methods in terms of drug likeness, synthetic accessibility, pocket binding mode and molecule generation speed. Drug design has recently seen immense improvements in computational methods, but models can still struggle generalizing across binding pockets. Feng and colleagues combine a language model with geometric deep learning to provide efficient generation of potential new drugs.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s42256-023-00775-6</doi><tpages>12</tpages><orcidid>https://orcid.org/0009-0007-1220-1458</orcidid><orcidid>https://orcid.org/0000-0001-9282-2105</orcidid><orcidid>https://orcid.org/0009-0004-8509-2385</orcidid><orcidid>https://orcid.org/0000-0002-7168-3676</orcidid><orcidid>https://orcid.org/0000-0003-3822-9110</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2522-5839
ispartof Nature machine intelligence, 2024-01, Vol.6 (1), p.62-73
issn 2522-5839
2522-5839
language eng
recordid cdi_proquest_journals_2917706768
source Nature; SpringerLink Journals - AutoHoldings
subjects 631/154
639/705/258
Artificial intelligence
Binding
Datasets
Decoys
Deep learning
Engineering
Graphical representations
Kinases
Ligands
Methods
Molecular structure
Proteins
Topology
title Generation of 3D molecules in pockets via a language model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T11%3A30%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generation%20of%203D%20molecules%20in%20pockets%20via%20a%20language%20model&rft.jtitle=Nature%20machine%20intelligence&rft.au=Feng,%20Wei&rft.date=2024-01-01&rft.volume=6&rft.issue=1&rft.spage=62&rft.epage=73&rft.pages=62-73&rft.issn=2522-5839&rft.eissn=2522-5839&rft_id=info:doi/10.1038/s42256-023-00775-6&rft_dat=%3Cproquest_cross%3E2917706768%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917706768&rft_id=info:pmid/&rfr_iscdi=true