A Rule Based Water Quality Sensor Placement Method for Water Supply Systems Using Network Topology
Water supply systems are vital infrastructures that need to be monitored continuously for detection of any abnormal condition. Sensor placement is a key step that directly affects the success of a monitoring system. Therefore, the location and number of sensors should be carefully determined. To dea...
Gespeichert in:
Veröffentlicht in: | Water resources management 2024, Vol.38 (2), p.569-586 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 586 |
---|---|
container_issue | 2 |
container_start_page | 569 |
container_title | Water resources management |
container_volume | 38 |
creator | Shahsavandi, M. Yazdi, J. Jalili-Ghazizadeh, M. Mehrabadi, A. Rashidi |
description | Water supply systems are vital infrastructures that need to be monitored continuously for detection of any abnormal condition. Sensor placement is a key step that directly affects the success of a monitoring system. Therefore, the location and number of sensors should be carefully determined. To deal this problem, this paper presents a novel approach for efficiently determining the number and location of quality sensors based on the network topology and shortest path tree. The proposed method aims to maximize the number of monitored nodes with some simple rules and relies only on a hydraulic model. The results from tests on three benchmark water distribution networks with different sizes show that the proposed approach yields similar results to optimization tools while the proposed method is simpler and has less computational burden. Also, by increasing the size of the network and the number of sensors, the proposed method outperforms the optimization technique in some cases. Although the presented method has been focused on maximizing the number of monitored nodes, future works can extend it by addressing objectives beyond the number of monitored nodes. |
doi_str_mv | 10.1007/s11269-023-03685-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917702487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153623433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-a70e530c5d30ca7a3daf4ae948ae170f0dc10ea24b2ebf9e723091c6d6d82cca3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAi5fVSbK7aY4qfkH9bIvHkGZna-t2sya7SP-90RUED15mYHjel-Eh5JDBCQOQp4ExnqsEuEhA5KMsUVtkwDIpEpZnsE0GoDgkqUzZLtkLYQUQYwoGZH5Gn7sK6bkJWNAX06KnT52plu2GTrAOztPHylhcY93SO2xfXUHLeOzJSdc0VQQ3ocV1oLOwrBf0HtsP59_o1DWucovNPtkpTRXw4GcPyezqcnpxk4wfrm8vzsaJFSDaxEjATIDNijiMNKIwZWpQpSODTEIJhWWAhqdzjvNSoeQCFLN5kRcjbq0RQ3Lc9zbevXcYWr1eBotVZWp0XdCCZSLnIhUiokd_0JXrfB2_01wxKYGnIxkp3lPWuxA8lrrxy7XxG81Af2nXvXYdtetv7VrFkOhDIcL1Av1v9T-pT1rXhbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917702487</pqid></control><display><type>article</type><title>A Rule Based Water Quality Sensor Placement Method for Water Supply Systems Using Network Topology</title><source>SpringerLink (Online service)</source><creator>Shahsavandi, M. ; Yazdi, J. ; Jalili-Ghazizadeh, M. ; Mehrabadi, A. Rashidi</creator><creatorcontrib>Shahsavandi, M. ; Yazdi, J. ; Jalili-Ghazizadeh, M. ; Mehrabadi, A. Rashidi</creatorcontrib><description>Water supply systems are vital infrastructures that need to be monitored continuously for detection of any abnormal condition. Sensor placement is a key step that directly affects the success of a monitoring system. Therefore, the location and number of sensors should be carefully determined. To deal this problem, this paper presents a novel approach for efficiently determining the number and location of quality sensors based on the network topology and shortest path tree. The proposed method aims to maximize the number of monitored nodes with some simple rules and relies only on a hydraulic model. The results from tests on three benchmark water distribution networks with different sizes show that the proposed approach yields similar results to optimization tools while the proposed method is simpler and has less computational burden. Also, by increasing the size of the network and the number of sensors, the proposed method outperforms the optimization technique in some cases. Although the presented method has been focused on maximizing the number of monitored nodes, future works can extend it by addressing objectives beyond the number of monitored nodes.</description><identifier>ISSN: 0920-4741</identifier><identifier>EISSN: 1573-1650</identifier><identifier>DOI: 10.1007/s11269-023-03685-9</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Atmospheric Sciences ; Civil Engineering ; Earth and Environmental Science ; Earth Sciences ; Environment ; Geotechnical Engineering & Applied Earth Sciences ; Hydraulic models ; Hydrogeology ; Hydrology/Water Resources ; Monitoring systems ; Network topologies ; Nodes ; Optimization ; Optimization techniques ; Placement ; Sensors ; Shortest-path problems ; Topology ; trees ; water ; Water conveyance ; Water distribution ; Water engineering ; Water quality ; Water supply ; Water supply systems</subject><ispartof>Water resources management, 2024, Vol.38 (2), p.569-586</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c303t-a70e530c5d30ca7a3daf4ae948ae170f0dc10ea24b2ebf9e723091c6d6d82cca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11269-023-03685-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11269-023-03685-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Shahsavandi, M.</creatorcontrib><creatorcontrib>Yazdi, J.</creatorcontrib><creatorcontrib>Jalili-Ghazizadeh, M.</creatorcontrib><creatorcontrib>Mehrabadi, A. Rashidi</creatorcontrib><title>A Rule Based Water Quality Sensor Placement Method for Water Supply Systems Using Network Topology</title><title>Water resources management</title><addtitle>Water Resour Manage</addtitle><description>Water supply systems are vital infrastructures that need to be monitored continuously for detection of any abnormal condition. Sensor placement is a key step that directly affects the success of a monitoring system. Therefore, the location and number of sensors should be carefully determined. To deal this problem, this paper presents a novel approach for efficiently determining the number and location of quality sensors based on the network topology and shortest path tree. The proposed method aims to maximize the number of monitored nodes with some simple rules and relies only on a hydraulic model. The results from tests on three benchmark water distribution networks with different sizes show that the proposed approach yields similar results to optimization tools while the proposed method is simpler and has less computational burden. Also, by increasing the size of the network and the number of sensors, the proposed method outperforms the optimization technique in some cases. Although the presented method has been focused on maximizing the number of monitored nodes, future works can extend it by addressing objectives beyond the number of monitored nodes.</description><subject>Atmospheric Sciences</subject><subject>Civil Engineering</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environment</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Hydraulic models</subject><subject>Hydrogeology</subject><subject>Hydrology/Water Resources</subject><subject>Monitoring systems</subject><subject>Network topologies</subject><subject>Nodes</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Placement</subject><subject>Sensors</subject><subject>Shortest-path problems</subject><subject>Topology</subject><subject>trees</subject><subject>water</subject><subject>Water conveyance</subject><subject>Water distribution</subject><subject>Water engineering</subject><subject>Water quality</subject><subject>Water supply</subject><subject>Water supply systems</subject><issn>0920-4741</issn><issn>1573-1650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wFPAi5fVSbK7aY4qfkH9bIvHkGZna-t2sya7SP-90RUED15mYHjel-Eh5JDBCQOQp4ExnqsEuEhA5KMsUVtkwDIpEpZnsE0GoDgkqUzZLtkLYQUQYwoGZH5Gn7sK6bkJWNAX06KnT52plu2GTrAOztPHylhcY93SO2xfXUHLeOzJSdc0VQQ3ocV1oLOwrBf0HtsP59_o1DWucovNPtkpTRXw4GcPyezqcnpxk4wfrm8vzsaJFSDaxEjATIDNijiMNKIwZWpQpSODTEIJhWWAhqdzjvNSoeQCFLN5kRcjbq0RQ3Lc9zbevXcYWr1eBotVZWp0XdCCZSLnIhUiokd_0JXrfB2_01wxKYGnIxkp3lPWuxA8lrrxy7XxG81Af2nXvXYdtetv7VrFkOhDIcL1Av1v9T-pT1rXhbA</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Shahsavandi, M.</creator><creator>Yazdi, J.</creator><creator>Jalili-Ghazizadeh, M.</creator><creator>Mehrabadi, A. Rashidi</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KR7</scope><scope>L.-</scope><scope>L.G</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>2024</creationdate><title>A Rule Based Water Quality Sensor Placement Method for Water Supply Systems Using Network Topology</title><author>Shahsavandi, M. ; Yazdi, J. ; Jalili-Ghazizadeh, M. ; Mehrabadi, A. Rashidi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-a70e530c5d30ca7a3daf4ae948ae170f0dc10ea24b2ebf9e723091c6d6d82cca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Atmospheric Sciences</topic><topic>Civil Engineering</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environment</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Hydraulic models</topic><topic>Hydrogeology</topic><topic>Hydrology/Water Resources</topic><topic>Monitoring systems</topic><topic>Network topologies</topic><topic>Nodes</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Placement</topic><topic>Sensors</topic><topic>Shortest-path problems</topic><topic>Topology</topic><topic>trees</topic><topic>water</topic><topic>Water conveyance</topic><topic>Water distribution</topic><topic>Water engineering</topic><topic>Water quality</topic><topic>Water supply</topic><topic>Water supply systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shahsavandi, M.</creatorcontrib><creatorcontrib>Yazdi, J.</creatorcontrib><creatorcontrib>Jalili-Ghazizadeh, M.</creatorcontrib><creatorcontrib>Mehrabadi, A. Rashidi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI商业信息数据库</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Water resources management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shahsavandi, M.</au><au>Yazdi, J.</au><au>Jalili-Ghazizadeh, M.</au><au>Mehrabadi, A. Rashidi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Rule Based Water Quality Sensor Placement Method for Water Supply Systems Using Network Topology</atitle><jtitle>Water resources management</jtitle><stitle>Water Resour Manage</stitle><date>2024</date><risdate>2024</risdate><volume>38</volume><issue>2</issue><spage>569</spage><epage>586</epage><pages>569-586</pages><issn>0920-4741</issn><eissn>1573-1650</eissn><abstract>Water supply systems are vital infrastructures that need to be monitored continuously for detection of any abnormal condition. Sensor placement is a key step that directly affects the success of a monitoring system. Therefore, the location and number of sensors should be carefully determined. To deal this problem, this paper presents a novel approach for efficiently determining the number and location of quality sensors based on the network topology and shortest path tree. The proposed method aims to maximize the number of monitored nodes with some simple rules and relies only on a hydraulic model. The results from tests on three benchmark water distribution networks with different sizes show that the proposed approach yields similar results to optimization tools while the proposed method is simpler and has less computational burden. Also, by increasing the size of the network and the number of sensors, the proposed method outperforms the optimization technique in some cases. Although the presented method has been focused on maximizing the number of monitored nodes, future works can extend it by addressing objectives beyond the number of monitored nodes.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11269-023-03685-9</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-4741 |
ispartof | Water resources management, 2024, Vol.38 (2), p.569-586 |
issn | 0920-4741 1573-1650 |
language | eng |
recordid | cdi_proquest_journals_2917702487 |
source | SpringerLink (Online service) |
subjects | Atmospheric Sciences Civil Engineering Earth and Environmental Science Earth Sciences Environment Geotechnical Engineering & Applied Earth Sciences Hydraulic models Hydrogeology Hydrology/Water Resources Monitoring systems Network topologies Nodes Optimization Optimization techniques Placement Sensors Shortest-path problems Topology trees water Water conveyance Water distribution Water engineering Water quality Water supply Water supply systems |
title | A Rule Based Water Quality Sensor Placement Method for Water Supply Systems Using Network Topology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T13%3A57%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Rule%20Based%20Water%20Quality%20Sensor%20Placement%20Method%20for%20Water%20Supply%20Systems%20Using%20Network%20Topology&rft.jtitle=Water%20resources%20management&rft.au=Shahsavandi,%20M.&rft.date=2024&rft.volume=38&rft.issue=2&rft.spage=569&rft.epage=586&rft.pages=569-586&rft.issn=0920-4741&rft.eissn=1573-1650&rft_id=info:doi/10.1007/s11269-023-03685-9&rft_dat=%3Cproquest_cross%3E3153623433%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917702487&rft_id=info:pmid/&rfr_iscdi=true |