Deforestation for agriculture increases microbial carbon use efficiency in subarctic soils

Agriculture is likely to expand poleward with climate change, encouraging deforestation for agriculture in subarctic regions, which alters soil physical, chemical and biological properties and potentially affects microbial metabolic efficiency. Deciphering how and by which mechanisms land-use change...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biology and fertility of soils 2024, Vol.60 (1), p.17-34
Hauptverfasser: Schroeder, Julia, Peplau, Tino, Pennekamp, Frank, Gregorich, Edward, Tebbe, Christoph C., Poeplau, Christopher
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 34
container_issue 1
container_start_page 17
container_title Biology and fertility of soils
container_volume 60
creator Schroeder, Julia
Peplau, Tino
Pennekamp, Frank
Gregorich, Edward
Tebbe, Christoph C.
Poeplau, Christopher
description Agriculture is likely to expand poleward with climate change, encouraging deforestation for agriculture in subarctic regions, which alters soil physical, chemical and biological properties and potentially affects microbial metabolic efficiency. Deciphering how and by which mechanisms land-use change affects microbial carbon use efficiency (CUE) will enable the development of mitigation strategies to alleviate C losses. We assessed CUE using 18 O-labelled water in a paired-plot approach on soils collected from 19 farms across the subarctic region of Yukon, Canada, comprising 14 pairs of forest-to-grassland conversion and 15 pairs of forest-to-cropland conversion. Microbial CUE significantly increased following conversion to grassland and cropland. Land-use conversion resulted in a lower estimated abundance of fungi, while the archaeal abundance increased. Interestingly, structural equation modelling revealed that increases in CUE were mediated by a rise in soil pH and a decrease in soil C:N ratio rather than by shifts in microbial community composition, i.e. the ratio of fungi, bacteria and archaea. Our findings indicate a direct control of abiotic factors on microbial CUE via improved nutrient availability and facilitated conditions for microbial growth. Overall, this implies that to a certain extent CUE can be managed to achieve a more efficient build-up of stabilised soil organic C (SOC), as reflected in increased mineral-associated organic C under agricultural land use. These insights may also help constrain SOC models that generally struggle to predict the effects of deforestation, something that is likely to take place more frequently in the subarctic.
doi_str_mv 10.1007/s00374-022-01669-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917702042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917702042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-d476cf851ab2e0eb665ffd20419c0f00fcc03d89b3c304d1c855d8924eeaa20e3</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxS0EEqXwBZgsMQfOdhInIyp_pUossLBYzuVcuUqTYidDvz0uQWJjujvp997pPcauBdwKAH0XAZTOM5AyA1GWdSZP2ELkKp26qk_ZAoSuMqlLec4uYtwCiKIS9YJ9PpAbAsXRjn7oedq53QSPUzdOgbjvMZCNFPnOYxgabzuONjQJnSJxcs6jpx4PieRxamzA0SOPg-_iJTtztot09TuX7OPp8X31kq3fnl9X9-sMVanGrM11ia4qhG0kATVlWTjXSshFjeAAHCKotqobhQryVmBVFOmUOZG1Ekgt2c3suw_D15SimO0whT69NLIWWkPykomSM5VixBjImX3wOxsORoA5dmjmDk3q0Px0aI4iNYtigvsNhT_rf1Tf0fh1-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917702042</pqid></control><display><type>article</type><title>Deforestation for agriculture increases microbial carbon use efficiency in subarctic soils</title><source>SpringerLink Journals - AutoHoldings</source><creator>Schroeder, Julia ; Peplau, Tino ; Pennekamp, Frank ; Gregorich, Edward ; Tebbe, Christoph C. ; Poeplau, Christopher</creator><creatorcontrib>Schroeder, Julia ; Peplau, Tino ; Pennekamp, Frank ; Gregorich, Edward ; Tebbe, Christoph C. ; Poeplau, Christopher</creatorcontrib><description>Agriculture is likely to expand poleward with climate change, encouraging deforestation for agriculture in subarctic regions, which alters soil physical, chemical and biological properties and potentially affects microbial metabolic efficiency. Deciphering how and by which mechanisms land-use change affects microbial carbon use efficiency (CUE) will enable the development of mitigation strategies to alleviate C losses. We assessed CUE using 18 O-labelled water in a paired-plot approach on soils collected from 19 farms across the subarctic region of Yukon, Canada, comprising 14 pairs of forest-to-grassland conversion and 15 pairs of forest-to-cropland conversion. Microbial CUE significantly increased following conversion to grassland and cropland. Land-use conversion resulted in a lower estimated abundance of fungi, while the archaeal abundance increased. Interestingly, structural equation modelling revealed that increases in CUE were mediated by a rise in soil pH and a decrease in soil C:N ratio rather than by shifts in microbial community composition, i.e. the ratio of fungi, bacteria and archaea. Our findings indicate a direct control of abiotic factors on microbial CUE via improved nutrient availability and facilitated conditions for microbial growth. Overall, this implies that to a certain extent CUE can be managed to achieve a more efficient build-up of stabilised soil organic C (SOC), as reflected in increased mineral-associated organic C under agricultural land use. These insights may also help constrain SOC models that generally struggle to predict the effects of deforestation, something that is likely to take place more frequently in the subarctic.</description><identifier>ISSN: 0178-2762</identifier><identifier>EISSN: 1432-0789</identifier><identifier>DOI: 10.1007/s00374-022-01669-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Abiotic factors ; Abundance ; Agricultural land ; Agriculture ; Archaea ; Biological properties ; Biomedical and Life Sciences ; Carbon ; Climate change ; Cold regions ; Community composition ; Deforestation ; Efficiency ; Fungi ; Grasslands ; Land use ; Life Sciences ; Mathematical models ; Microorganisms ; Mitigation ; Nutrient availability ; Organic soils ; Original Paper ; Soil ; Soil chemistry ; Soil pH ; Soil Science &amp; Conservation ; Soil stabilization ; Soils</subject><ispartof>Biology and fertility of soils, 2024, Vol.60 (1), p.17-34</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-d476cf851ab2e0eb665ffd20419c0f00fcc03d89b3c304d1c855d8924eeaa20e3</citedby><cites>FETCH-LOGICAL-c363t-d476cf851ab2e0eb665ffd20419c0f00fcc03d89b3c304d1c855d8924eeaa20e3</cites><orcidid>0000-0003-4861-0214 ; 0000-0003-3108-8810 ; 0000-0001-7181-7331 ; 0000-0003-0679-1045 ; 0000-0003-3625-104X ; 0000-0003-3652-2946</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00374-022-01669-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00374-022-01669-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Schroeder, Julia</creatorcontrib><creatorcontrib>Peplau, Tino</creatorcontrib><creatorcontrib>Pennekamp, Frank</creatorcontrib><creatorcontrib>Gregorich, Edward</creatorcontrib><creatorcontrib>Tebbe, Christoph C.</creatorcontrib><creatorcontrib>Poeplau, Christopher</creatorcontrib><title>Deforestation for agriculture increases microbial carbon use efficiency in subarctic soils</title><title>Biology and fertility of soils</title><addtitle>Biol Fertil Soils</addtitle><description>Agriculture is likely to expand poleward with climate change, encouraging deforestation for agriculture in subarctic regions, which alters soil physical, chemical and biological properties and potentially affects microbial metabolic efficiency. Deciphering how and by which mechanisms land-use change affects microbial carbon use efficiency (CUE) will enable the development of mitigation strategies to alleviate C losses. We assessed CUE using 18 O-labelled water in a paired-plot approach on soils collected from 19 farms across the subarctic region of Yukon, Canada, comprising 14 pairs of forest-to-grassland conversion and 15 pairs of forest-to-cropland conversion. Microbial CUE significantly increased following conversion to grassland and cropland. Land-use conversion resulted in a lower estimated abundance of fungi, while the archaeal abundance increased. Interestingly, structural equation modelling revealed that increases in CUE were mediated by a rise in soil pH and a decrease in soil C:N ratio rather than by shifts in microbial community composition, i.e. the ratio of fungi, bacteria and archaea. Our findings indicate a direct control of abiotic factors on microbial CUE via improved nutrient availability and facilitated conditions for microbial growth. Overall, this implies that to a certain extent CUE can be managed to achieve a more efficient build-up of stabilised soil organic C (SOC), as reflected in increased mineral-associated organic C under agricultural land use. These insights may also help constrain SOC models that generally struggle to predict the effects of deforestation, something that is likely to take place more frequently in the subarctic.</description><subject>Abiotic factors</subject><subject>Abundance</subject><subject>Agricultural land</subject><subject>Agriculture</subject><subject>Archaea</subject><subject>Biological properties</subject><subject>Biomedical and Life Sciences</subject><subject>Carbon</subject><subject>Climate change</subject><subject>Cold regions</subject><subject>Community composition</subject><subject>Deforestation</subject><subject>Efficiency</subject><subject>Fungi</subject><subject>Grasslands</subject><subject>Land use</subject><subject>Life Sciences</subject><subject>Mathematical models</subject><subject>Microorganisms</subject><subject>Mitigation</subject><subject>Nutrient availability</subject><subject>Organic soils</subject><subject>Original Paper</subject><subject>Soil</subject><subject>Soil chemistry</subject><subject>Soil pH</subject><subject>Soil Science &amp; Conservation</subject><subject>Soil stabilization</subject><subject>Soils</subject><issn>0178-2762</issn><issn>1432-0789</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kD9PwzAQxS0EEqXwBZgsMQfOdhInIyp_pUossLBYzuVcuUqTYidDvz0uQWJjujvp997pPcauBdwKAH0XAZTOM5AyA1GWdSZP2ELkKp26qk_ZAoSuMqlLec4uYtwCiKIS9YJ9PpAbAsXRjn7oedq53QSPUzdOgbjvMZCNFPnOYxgabzuONjQJnSJxcs6jpx4PieRxamzA0SOPg-_iJTtztot09TuX7OPp8X31kq3fnl9X9-sMVanGrM11ia4qhG0kATVlWTjXSshFjeAAHCKotqobhQryVmBVFOmUOZG1Ekgt2c3suw_D15SimO0whT69NLIWWkPykomSM5VixBjImX3wOxsORoA5dmjmDk3q0Px0aI4iNYtigvsNhT_rf1Tf0fh1-Q</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Schroeder, Julia</creator><creator>Peplau, Tino</creator><creator>Pennekamp, Frank</creator><creator>Gregorich, Edward</creator><creator>Tebbe, Christoph C.</creator><creator>Poeplau, Christopher</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7T7</scope><scope>7UA</scope><scope>7X2</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H95</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>LK8</scope><scope>M0K</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-4861-0214</orcidid><orcidid>https://orcid.org/0000-0003-3108-8810</orcidid><orcidid>https://orcid.org/0000-0001-7181-7331</orcidid><orcidid>https://orcid.org/0000-0003-0679-1045</orcidid><orcidid>https://orcid.org/0000-0003-3625-104X</orcidid><orcidid>https://orcid.org/0000-0003-3652-2946</orcidid></search><sort><creationdate>2024</creationdate><title>Deforestation for agriculture increases microbial carbon use efficiency in subarctic soils</title><author>Schroeder, Julia ; Peplau, Tino ; Pennekamp, Frank ; Gregorich, Edward ; Tebbe, Christoph C. ; Poeplau, Christopher</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-d476cf851ab2e0eb665ffd20419c0f00fcc03d89b3c304d1c855d8924eeaa20e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Abiotic factors</topic><topic>Abundance</topic><topic>Agricultural land</topic><topic>Agriculture</topic><topic>Archaea</topic><topic>Biological properties</topic><topic>Biomedical and Life Sciences</topic><topic>Carbon</topic><topic>Climate change</topic><topic>Cold regions</topic><topic>Community composition</topic><topic>Deforestation</topic><topic>Efficiency</topic><topic>Fungi</topic><topic>Grasslands</topic><topic>Land use</topic><topic>Life Sciences</topic><topic>Mathematical models</topic><topic>Microorganisms</topic><topic>Mitigation</topic><topic>Nutrient availability</topic><topic>Organic soils</topic><topic>Original Paper</topic><topic>Soil</topic><topic>Soil chemistry</topic><topic>Soil pH</topic><topic>Soil Science &amp; Conservation</topic><topic>Soil stabilization</topic><topic>Soils</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schroeder, Julia</creatorcontrib><creatorcontrib>Peplau, Tino</creatorcontrib><creatorcontrib>Pennekamp, Frank</creatorcontrib><creatorcontrib>Gregorich, Edward</creatorcontrib><creatorcontrib>Tebbe, Christoph C.</creatorcontrib><creatorcontrib>Poeplau, Christopher</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Water Resources Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Biology and fertility of soils</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schroeder, Julia</au><au>Peplau, Tino</au><au>Pennekamp, Frank</au><au>Gregorich, Edward</au><au>Tebbe, Christoph C.</au><au>Poeplau, Christopher</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deforestation for agriculture increases microbial carbon use efficiency in subarctic soils</atitle><jtitle>Biology and fertility of soils</jtitle><stitle>Biol Fertil Soils</stitle><date>2024</date><risdate>2024</risdate><volume>60</volume><issue>1</issue><spage>17</spage><epage>34</epage><pages>17-34</pages><issn>0178-2762</issn><eissn>1432-0789</eissn><abstract>Agriculture is likely to expand poleward with climate change, encouraging deforestation for agriculture in subarctic regions, which alters soil physical, chemical and biological properties and potentially affects microbial metabolic efficiency. Deciphering how and by which mechanisms land-use change affects microbial carbon use efficiency (CUE) will enable the development of mitigation strategies to alleviate C losses. We assessed CUE using 18 O-labelled water in a paired-plot approach on soils collected from 19 farms across the subarctic region of Yukon, Canada, comprising 14 pairs of forest-to-grassland conversion and 15 pairs of forest-to-cropland conversion. Microbial CUE significantly increased following conversion to grassland and cropland. Land-use conversion resulted in a lower estimated abundance of fungi, while the archaeal abundance increased. Interestingly, structural equation modelling revealed that increases in CUE were mediated by a rise in soil pH and a decrease in soil C:N ratio rather than by shifts in microbial community composition, i.e. the ratio of fungi, bacteria and archaea. Our findings indicate a direct control of abiotic factors on microbial CUE via improved nutrient availability and facilitated conditions for microbial growth. Overall, this implies that to a certain extent CUE can be managed to achieve a more efficient build-up of stabilised soil organic C (SOC), as reflected in increased mineral-associated organic C under agricultural land use. These insights may also help constrain SOC models that generally struggle to predict the effects of deforestation, something that is likely to take place more frequently in the subarctic.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00374-022-01669-2</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-4861-0214</orcidid><orcidid>https://orcid.org/0000-0003-3108-8810</orcidid><orcidid>https://orcid.org/0000-0001-7181-7331</orcidid><orcidid>https://orcid.org/0000-0003-0679-1045</orcidid><orcidid>https://orcid.org/0000-0003-3625-104X</orcidid><orcidid>https://orcid.org/0000-0003-3652-2946</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0178-2762
ispartof Biology and fertility of soils, 2024, Vol.60 (1), p.17-34
issn 0178-2762
1432-0789
language eng
recordid cdi_proquest_journals_2917702042
source SpringerLink Journals - AutoHoldings
subjects Abiotic factors
Abundance
Agricultural land
Agriculture
Archaea
Biological properties
Biomedical and Life Sciences
Carbon
Climate change
Cold regions
Community composition
Deforestation
Efficiency
Fungi
Grasslands
Land use
Life Sciences
Mathematical models
Microorganisms
Mitigation
Nutrient availability
Organic soils
Original Paper
Soil
Soil chemistry
Soil pH
Soil Science & Conservation
Soil stabilization
Soils
title Deforestation for agriculture increases microbial carbon use efficiency in subarctic soils
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A18%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deforestation%20for%20agriculture%20increases%20microbial%20carbon%20use%20efficiency%20in%20subarctic%20soils&rft.jtitle=Biology%20and%20fertility%20of%20soils&rft.au=Schroeder,%20Julia&rft.date=2024&rft.volume=60&rft.issue=1&rft.spage=17&rft.epage=34&rft.pages=17-34&rft.issn=0178-2762&rft.eissn=1432-0789&rft_id=info:doi/10.1007/s00374-022-01669-2&rft_dat=%3Cproquest_cross%3E2917702042%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917702042&rft_id=info:pmid/&rfr_iscdi=true