Pixel-Wise Recognition for Holistic Surgical Scene Understanding
This paper presents the Holistic and Multi-Granular Surgical Scene Understanding of Prostatectomies (GraSP) dataset, a curated benchmark that models surgical scene understanding as a hierarchy of complementary tasks with varying levels of granularity. Our approach enables a multi-level comprehension...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-01 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Ayobi, Nicolás Rodríguez, Santiago Pérez, Alejandra Hernández, Isabela Aparicio, Nicolás Dessevres, Eugénie Peña, Sebastián Santander, Jessica Caicedo, Juan Ignacio Fernández, Nicolás Arbeláez, Pablo |
description | This paper presents the Holistic and Multi-Granular Surgical Scene Understanding of Prostatectomies (GraSP) dataset, a curated benchmark that models surgical scene understanding as a hierarchy of complementary tasks with varying levels of granularity. Our approach enables a multi-level comprehension of surgical activities, encompassing long-term tasks such as surgical phases and steps recognition and short-term tasks including surgical instrument segmentation and atomic visual actions detection. To exploit our proposed benchmark, we introduce the Transformers for Actions, Phases, Steps, and Instrument Segmentation (TAPIS) model, a general architecture that combines a global video feature extractor with localized region proposals from an instrument segmentation model to tackle the multi-granularity of our benchmark. Through extensive experimentation, we demonstrate the impact of including segmentation annotations in short-term recognition tasks, highlight the varying granularity requirements of each task, and establish TAPIS's superiority over previously proposed baselines and conventional CNN-based models. Additionally, we validate the robustness of our method across multiple public benchmarks, confirming the reliability and applicability of our dataset. This work represents a significant step forward in Endoscopic Vision, offering a novel and comprehensive framework for future research towards a holistic understanding of surgical procedures. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2917696090</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917696090</sourcerecordid><originalsourceid>FETCH-proquest_journals_29176960903</originalsourceid><addsrcrecordid>eNqNyrEKwjAUQNEgCBbtPwScC2liW7sJonQUqziWkL6WV0KieSn4-Tr4AU53OHfBEqlUnu13Uq5YSjQJIWRZyaJQCTtc8A02eyABv4Lxo8OI3vHBB954ixTR8HYOIxpteWvAAb-7HgJF7Xp044YtB20J0l_XbHs-3Y5N9gz-NQPFbvJzcF_qZJ1XZV2KWqj_rg8-cjkz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917696090</pqid></control><display><type>article</type><title>Pixel-Wise Recognition for Holistic Surgical Scene Understanding</title><source>Freely Accessible Journals</source><creator>Ayobi, Nicolás ; Rodríguez, Santiago ; Pérez, Alejandra ; Hernández, Isabela ; Aparicio, Nicolás ; Dessevres, Eugénie ; Peña, Sebastián ; Santander, Jessica ; Caicedo, Juan Ignacio ; Fernández, Nicolás ; Arbeláez, Pablo</creator><creatorcontrib>Ayobi, Nicolás ; Rodríguez, Santiago ; Pérez, Alejandra ; Hernández, Isabela ; Aparicio, Nicolás ; Dessevres, Eugénie ; Peña, Sebastián ; Santander, Jessica ; Caicedo, Juan Ignacio ; Fernández, Nicolás ; Arbeláez, Pablo</creatorcontrib><description>This paper presents the Holistic and Multi-Granular Surgical Scene Understanding of Prostatectomies (GraSP) dataset, a curated benchmark that models surgical scene understanding as a hierarchy of complementary tasks with varying levels of granularity. Our approach enables a multi-level comprehension of surgical activities, encompassing long-term tasks such as surgical phases and steps recognition and short-term tasks including surgical instrument segmentation and atomic visual actions detection. To exploit our proposed benchmark, we introduce the Transformers for Actions, Phases, Steps, and Instrument Segmentation (TAPIS) model, a general architecture that combines a global video feature extractor with localized region proposals from an instrument segmentation model to tackle the multi-granularity of our benchmark. Through extensive experimentation, we demonstrate the impact of including segmentation annotations in short-term recognition tasks, highlight the varying granularity requirements of each task, and establish TAPIS's superiority over previously proposed baselines and conventional CNN-based models. Additionally, we validate the robustness of our method across multiple public benchmarks, confirming the reliability and applicability of our dataset. This work represents a significant step forward in Endoscopic Vision, offering a novel and comprehensive framework for future research towards a holistic understanding of surgical procedures.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Annotations ; Benchmarks ; Datasets ; Feature extraction ; Recognition ; Scene analysis ; Segmentation ; Surgical instruments</subject><ispartof>arXiv.org, 2024-01</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Ayobi, Nicolás</creatorcontrib><creatorcontrib>Rodríguez, Santiago</creatorcontrib><creatorcontrib>Pérez, Alejandra</creatorcontrib><creatorcontrib>Hernández, Isabela</creatorcontrib><creatorcontrib>Aparicio, Nicolás</creatorcontrib><creatorcontrib>Dessevres, Eugénie</creatorcontrib><creatorcontrib>Peña, Sebastián</creatorcontrib><creatorcontrib>Santander, Jessica</creatorcontrib><creatorcontrib>Caicedo, Juan Ignacio</creatorcontrib><creatorcontrib>Fernández, Nicolás</creatorcontrib><creatorcontrib>Arbeláez, Pablo</creatorcontrib><title>Pixel-Wise Recognition for Holistic Surgical Scene Understanding</title><title>arXiv.org</title><description>This paper presents the Holistic and Multi-Granular Surgical Scene Understanding of Prostatectomies (GraSP) dataset, a curated benchmark that models surgical scene understanding as a hierarchy of complementary tasks with varying levels of granularity. Our approach enables a multi-level comprehension of surgical activities, encompassing long-term tasks such as surgical phases and steps recognition and short-term tasks including surgical instrument segmentation and atomic visual actions detection. To exploit our proposed benchmark, we introduce the Transformers for Actions, Phases, Steps, and Instrument Segmentation (TAPIS) model, a general architecture that combines a global video feature extractor with localized region proposals from an instrument segmentation model to tackle the multi-granularity of our benchmark. Through extensive experimentation, we demonstrate the impact of including segmentation annotations in short-term recognition tasks, highlight the varying granularity requirements of each task, and establish TAPIS's superiority over previously proposed baselines and conventional CNN-based models. Additionally, we validate the robustness of our method across multiple public benchmarks, confirming the reliability and applicability of our dataset. This work represents a significant step forward in Endoscopic Vision, offering a novel and comprehensive framework for future research towards a holistic understanding of surgical procedures.</description><subject>Annotations</subject><subject>Benchmarks</subject><subject>Datasets</subject><subject>Feature extraction</subject><subject>Recognition</subject><subject>Scene analysis</subject><subject>Segmentation</subject><subject>Surgical instruments</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyrEKwjAUQNEgCBbtPwScC2liW7sJonQUqziWkL6WV0KieSn4-Tr4AU53OHfBEqlUnu13Uq5YSjQJIWRZyaJQCTtc8A02eyABv4Lxo8OI3vHBB954ixTR8HYOIxpteWvAAb-7HgJF7Xp044YtB20J0l_XbHs-3Y5N9gz-NQPFbvJzcF_qZJ1XZV2KWqj_rg8-cjkz</recordid><startdate>20240126</startdate><enddate>20240126</enddate><creator>Ayobi, Nicolás</creator><creator>Rodríguez, Santiago</creator><creator>Pérez, Alejandra</creator><creator>Hernández, Isabela</creator><creator>Aparicio, Nicolás</creator><creator>Dessevres, Eugénie</creator><creator>Peña, Sebastián</creator><creator>Santander, Jessica</creator><creator>Caicedo, Juan Ignacio</creator><creator>Fernández, Nicolás</creator><creator>Arbeláez, Pablo</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240126</creationdate><title>Pixel-Wise Recognition for Holistic Surgical Scene Understanding</title><author>Ayobi, Nicolás ; Rodríguez, Santiago ; Pérez, Alejandra ; Hernández, Isabela ; Aparicio, Nicolás ; Dessevres, Eugénie ; Peña, Sebastián ; Santander, Jessica ; Caicedo, Juan Ignacio ; Fernández, Nicolás ; Arbeláez, Pablo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29176960903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Annotations</topic><topic>Benchmarks</topic><topic>Datasets</topic><topic>Feature extraction</topic><topic>Recognition</topic><topic>Scene analysis</topic><topic>Segmentation</topic><topic>Surgical instruments</topic><toplevel>online_resources</toplevel><creatorcontrib>Ayobi, Nicolás</creatorcontrib><creatorcontrib>Rodríguez, Santiago</creatorcontrib><creatorcontrib>Pérez, Alejandra</creatorcontrib><creatorcontrib>Hernández, Isabela</creatorcontrib><creatorcontrib>Aparicio, Nicolás</creatorcontrib><creatorcontrib>Dessevres, Eugénie</creatorcontrib><creatorcontrib>Peña, Sebastián</creatorcontrib><creatorcontrib>Santander, Jessica</creatorcontrib><creatorcontrib>Caicedo, Juan Ignacio</creatorcontrib><creatorcontrib>Fernández, Nicolás</creatorcontrib><creatorcontrib>Arbeláez, Pablo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ayobi, Nicolás</au><au>Rodríguez, Santiago</au><au>Pérez, Alejandra</au><au>Hernández, Isabela</au><au>Aparicio, Nicolás</au><au>Dessevres, Eugénie</au><au>Peña, Sebastián</au><au>Santander, Jessica</au><au>Caicedo, Juan Ignacio</au><au>Fernández, Nicolás</au><au>Arbeláez, Pablo</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Pixel-Wise Recognition for Holistic Surgical Scene Understanding</atitle><jtitle>arXiv.org</jtitle><date>2024-01-26</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>This paper presents the Holistic and Multi-Granular Surgical Scene Understanding of Prostatectomies (GraSP) dataset, a curated benchmark that models surgical scene understanding as a hierarchy of complementary tasks with varying levels of granularity. Our approach enables a multi-level comprehension of surgical activities, encompassing long-term tasks such as surgical phases and steps recognition and short-term tasks including surgical instrument segmentation and atomic visual actions detection. To exploit our proposed benchmark, we introduce the Transformers for Actions, Phases, Steps, and Instrument Segmentation (TAPIS) model, a general architecture that combines a global video feature extractor with localized region proposals from an instrument segmentation model to tackle the multi-granularity of our benchmark. Through extensive experimentation, we demonstrate the impact of including segmentation annotations in short-term recognition tasks, highlight the varying granularity requirements of each task, and establish TAPIS's superiority over previously proposed baselines and conventional CNN-based models. Additionally, we validate the robustness of our method across multiple public benchmarks, confirming the reliability and applicability of our dataset. This work represents a significant step forward in Endoscopic Vision, offering a novel and comprehensive framework for future research towards a holistic understanding of surgical procedures.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2917696090 |
source | Freely Accessible Journals |
subjects | Annotations Benchmarks Datasets Feature extraction Recognition Scene analysis Segmentation Surgical instruments |
title | Pixel-Wise Recognition for Holistic Surgical Scene Understanding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T18%3A55%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Pixel-Wise%20Recognition%20for%20Holistic%20Surgical%20Scene%20Understanding&rft.jtitle=arXiv.org&rft.au=Ayobi,%20Nicol%C3%A1s&rft.date=2024-01-26&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2917696090%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917696090&rft_id=info:pmid/&rfr_iscdi=true |