Pixel-Wise Recognition for Holistic Surgical Scene Understanding

This paper presents the Holistic and Multi-Granular Surgical Scene Understanding of Prostatectomies (GraSP) dataset, a curated benchmark that models surgical scene understanding as a hierarchy of complementary tasks with varying levels of granularity. Our approach enables a multi-level comprehension...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-01
Hauptverfasser: Ayobi, Nicolás, Rodríguez, Santiago, Pérez, Alejandra, Hernández, Isabela, Aparicio, Nicolás, Dessevres, Eugénie, Peña, Sebastián, Santander, Jessica, Caicedo, Juan Ignacio, Fernández, Nicolás, Arbeláez, Pablo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Ayobi, Nicolás
Rodríguez, Santiago
Pérez, Alejandra
Hernández, Isabela
Aparicio, Nicolás
Dessevres, Eugénie
Peña, Sebastián
Santander, Jessica
Caicedo, Juan Ignacio
Fernández, Nicolás
Arbeláez, Pablo
description This paper presents the Holistic and Multi-Granular Surgical Scene Understanding of Prostatectomies (GraSP) dataset, a curated benchmark that models surgical scene understanding as a hierarchy of complementary tasks with varying levels of granularity. Our approach enables a multi-level comprehension of surgical activities, encompassing long-term tasks such as surgical phases and steps recognition and short-term tasks including surgical instrument segmentation and atomic visual actions detection. To exploit our proposed benchmark, we introduce the Transformers for Actions, Phases, Steps, and Instrument Segmentation (TAPIS) model, a general architecture that combines a global video feature extractor with localized region proposals from an instrument segmentation model to tackle the multi-granularity of our benchmark. Through extensive experimentation, we demonstrate the impact of including segmentation annotations in short-term recognition tasks, highlight the varying granularity requirements of each task, and establish TAPIS's superiority over previously proposed baselines and conventional CNN-based models. Additionally, we validate the robustness of our method across multiple public benchmarks, confirming the reliability and applicability of our dataset. This work represents a significant step forward in Endoscopic Vision, offering a novel and comprehensive framework for future research towards a holistic understanding of surgical procedures.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2917696090</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917696090</sourcerecordid><originalsourceid>FETCH-proquest_journals_29176960903</originalsourceid><addsrcrecordid>eNqNyrEKwjAUQNEgCBbtPwScC2liW7sJonQUqziWkL6WV0KieSn4-Tr4AU53OHfBEqlUnu13Uq5YSjQJIWRZyaJQCTtc8A02eyABv4Lxo8OI3vHBB954ixTR8HYOIxpteWvAAb-7HgJF7Xp044YtB20J0l_XbHs-3Y5N9gz-NQPFbvJzcF_qZJ1XZV2KWqj_rg8-cjkz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917696090</pqid></control><display><type>article</type><title>Pixel-Wise Recognition for Holistic Surgical Scene Understanding</title><source>Freely Accessible Journals</source><creator>Ayobi, Nicolás ; Rodríguez, Santiago ; Pérez, Alejandra ; Hernández, Isabela ; Aparicio, Nicolás ; Dessevres, Eugénie ; Peña, Sebastián ; Santander, Jessica ; Caicedo, Juan Ignacio ; Fernández, Nicolás ; Arbeláez, Pablo</creator><creatorcontrib>Ayobi, Nicolás ; Rodríguez, Santiago ; Pérez, Alejandra ; Hernández, Isabela ; Aparicio, Nicolás ; Dessevres, Eugénie ; Peña, Sebastián ; Santander, Jessica ; Caicedo, Juan Ignacio ; Fernández, Nicolás ; Arbeláez, Pablo</creatorcontrib><description>This paper presents the Holistic and Multi-Granular Surgical Scene Understanding of Prostatectomies (GraSP) dataset, a curated benchmark that models surgical scene understanding as a hierarchy of complementary tasks with varying levels of granularity. Our approach enables a multi-level comprehension of surgical activities, encompassing long-term tasks such as surgical phases and steps recognition and short-term tasks including surgical instrument segmentation and atomic visual actions detection. To exploit our proposed benchmark, we introduce the Transformers for Actions, Phases, Steps, and Instrument Segmentation (TAPIS) model, a general architecture that combines a global video feature extractor with localized region proposals from an instrument segmentation model to tackle the multi-granularity of our benchmark. Through extensive experimentation, we demonstrate the impact of including segmentation annotations in short-term recognition tasks, highlight the varying granularity requirements of each task, and establish TAPIS's superiority over previously proposed baselines and conventional CNN-based models. Additionally, we validate the robustness of our method across multiple public benchmarks, confirming the reliability and applicability of our dataset. This work represents a significant step forward in Endoscopic Vision, offering a novel and comprehensive framework for future research towards a holistic understanding of surgical procedures.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Annotations ; Benchmarks ; Datasets ; Feature extraction ; Recognition ; Scene analysis ; Segmentation ; Surgical instruments</subject><ispartof>arXiv.org, 2024-01</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Ayobi, Nicolás</creatorcontrib><creatorcontrib>Rodríguez, Santiago</creatorcontrib><creatorcontrib>Pérez, Alejandra</creatorcontrib><creatorcontrib>Hernández, Isabela</creatorcontrib><creatorcontrib>Aparicio, Nicolás</creatorcontrib><creatorcontrib>Dessevres, Eugénie</creatorcontrib><creatorcontrib>Peña, Sebastián</creatorcontrib><creatorcontrib>Santander, Jessica</creatorcontrib><creatorcontrib>Caicedo, Juan Ignacio</creatorcontrib><creatorcontrib>Fernández, Nicolás</creatorcontrib><creatorcontrib>Arbeláez, Pablo</creatorcontrib><title>Pixel-Wise Recognition for Holistic Surgical Scene Understanding</title><title>arXiv.org</title><description>This paper presents the Holistic and Multi-Granular Surgical Scene Understanding of Prostatectomies (GraSP) dataset, a curated benchmark that models surgical scene understanding as a hierarchy of complementary tasks with varying levels of granularity. Our approach enables a multi-level comprehension of surgical activities, encompassing long-term tasks such as surgical phases and steps recognition and short-term tasks including surgical instrument segmentation and atomic visual actions detection. To exploit our proposed benchmark, we introduce the Transformers for Actions, Phases, Steps, and Instrument Segmentation (TAPIS) model, a general architecture that combines a global video feature extractor with localized region proposals from an instrument segmentation model to tackle the multi-granularity of our benchmark. Through extensive experimentation, we demonstrate the impact of including segmentation annotations in short-term recognition tasks, highlight the varying granularity requirements of each task, and establish TAPIS's superiority over previously proposed baselines and conventional CNN-based models. Additionally, we validate the robustness of our method across multiple public benchmarks, confirming the reliability and applicability of our dataset. This work represents a significant step forward in Endoscopic Vision, offering a novel and comprehensive framework for future research towards a holistic understanding of surgical procedures.</description><subject>Annotations</subject><subject>Benchmarks</subject><subject>Datasets</subject><subject>Feature extraction</subject><subject>Recognition</subject><subject>Scene analysis</subject><subject>Segmentation</subject><subject>Surgical instruments</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyrEKwjAUQNEgCBbtPwScC2liW7sJonQUqziWkL6WV0KieSn4-Tr4AU53OHfBEqlUnu13Uq5YSjQJIWRZyaJQCTtc8A02eyABv4Lxo8OI3vHBB954ixTR8HYOIxpteWvAAb-7HgJF7Xp044YtB20J0l_XbHs-3Y5N9gz-NQPFbvJzcF_qZJ1XZV2KWqj_rg8-cjkz</recordid><startdate>20240126</startdate><enddate>20240126</enddate><creator>Ayobi, Nicolás</creator><creator>Rodríguez, Santiago</creator><creator>Pérez, Alejandra</creator><creator>Hernández, Isabela</creator><creator>Aparicio, Nicolás</creator><creator>Dessevres, Eugénie</creator><creator>Peña, Sebastián</creator><creator>Santander, Jessica</creator><creator>Caicedo, Juan Ignacio</creator><creator>Fernández, Nicolás</creator><creator>Arbeláez, Pablo</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240126</creationdate><title>Pixel-Wise Recognition for Holistic Surgical Scene Understanding</title><author>Ayobi, Nicolás ; Rodríguez, Santiago ; Pérez, Alejandra ; Hernández, Isabela ; Aparicio, Nicolás ; Dessevres, Eugénie ; Peña, Sebastián ; Santander, Jessica ; Caicedo, Juan Ignacio ; Fernández, Nicolás ; Arbeláez, Pablo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29176960903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Annotations</topic><topic>Benchmarks</topic><topic>Datasets</topic><topic>Feature extraction</topic><topic>Recognition</topic><topic>Scene analysis</topic><topic>Segmentation</topic><topic>Surgical instruments</topic><toplevel>online_resources</toplevel><creatorcontrib>Ayobi, Nicolás</creatorcontrib><creatorcontrib>Rodríguez, Santiago</creatorcontrib><creatorcontrib>Pérez, Alejandra</creatorcontrib><creatorcontrib>Hernández, Isabela</creatorcontrib><creatorcontrib>Aparicio, Nicolás</creatorcontrib><creatorcontrib>Dessevres, Eugénie</creatorcontrib><creatorcontrib>Peña, Sebastián</creatorcontrib><creatorcontrib>Santander, Jessica</creatorcontrib><creatorcontrib>Caicedo, Juan Ignacio</creatorcontrib><creatorcontrib>Fernández, Nicolás</creatorcontrib><creatorcontrib>Arbeláez, Pablo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ayobi, Nicolás</au><au>Rodríguez, Santiago</au><au>Pérez, Alejandra</au><au>Hernández, Isabela</au><au>Aparicio, Nicolás</au><au>Dessevres, Eugénie</au><au>Peña, Sebastián</au><au>Santander, Jessica</au><au>Caicedo, Juan Ignacio</au><au>Fernández, Nicolás</au><au>Arbeláez, Pablo</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Pixel-Wise Recognition for Holistic Surgical Scene Understanding</atitle><jtitle>arXiv.org</jtitle><date>2024-01-26</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>This paper presents the Holistic and Multi-Granular Surgical Scene Understanding of Prostatectomies (GraSP) dataset, a curated benchmark that models surgical scene understanding as a hierarchy of complementary tasks with varying levels of granularity. Our approach enables a multi-level comprehension of surgical activities, encompassing long-term tasks such as surgical phases and steps recognition and short-term tasks including surgical instrument segmentation and atomic visual actions detection. To exploit our proposed benchmark, we introduce the Transformers for Actions, Phases, Steps, and Instrument Segmentation (TAPIS) model, a general architecture that combines a global video feature extractor with localized region proposals from an instrument segmentation model to tackle the multi-granularity of our benchmark. Through extensive experimentation, we demonstrate the impact of including segmentation annotations in short-term recognition tasks, highlight the varying granularity requirements of each task, and establish TAPIS's superiority over previously proposed baselines and conventional CNN-based models. Additionally, we validate the robustness of our method across multiple public benchmarks, confirming the reliability and applicability of our dataset. This work represents a significant step forward in Endoscopic Vision, offering a novel and comprehensive framework for future research towards a holistic understanding of surgical procedures.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2917696090
source Freely Accessible Journals
subjects Annotations
Benchmarks
Datasets
Feature extraction
Recognition
Scene analysis
Segmentation
Surgical instruments
title Pixel-Wise Recognition for Holistic Surgical Scene Understanding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T18%3A55%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Pixel-Wise%20Recognition%20for%20Holistic%20Surgical%20Scene%20Understanding&rft.jtitle=arXiv.org&rft.au=Ayobi,%20Nicol%C3%A1s&rft.date=2024-01-26&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2917696090%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917696090&rft_id=info:pmid/&rfr_iscdi=true