Weak adversarial networks for solving forward and inverse problems involving 2D incompressible Navier–Stokes equations

In this paper, we study the weak adversarial network (WAN) (Zang et al. in J Comput Phys 411:109409, 2020) method for solving Navier–Stokes (NS) equation numerically, including both forward and inverse problems. Firstly, the NS equation is converted to the biharmonic formulation leveraging the strea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational & applied mathematics 2024-02, Vol.43 (1), Article 61
Hauptverfasser: Li, Wen-Ran, Yang, Rong, Yang, Xin-Guang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Computational & applied mathematics
container_volume 43
creator Li, Wen-Ran
Yang, Rong
Yang, Xin-Guang
description In this paper, we study the weak adversarial network (WAN) (Zang et al. in J Comput Phys 411:109409, 2020) method for solving Navier–Stokes (NS) equation numerically, including both forward and inverse problems. Firstly, the NS equation is converted to the biharmonic formulation leveraging the stream function, then the biharmonic formulation equation contributes to a test function as an operator. Furthermore, the underlying NS equation is discretized by using two neural networks based on weak formulation. Finally, numerical results for some experiments are presented, this method shows advantages of stability and accuracy compared with other algorithms, especially this method is useful for problems which have no strong solutions.
doi_str_mv 10.1007/s40314-023-02574-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917581711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917581711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-671812464c877cc6753467cdfe263c5720a4d06b16550d96bf6cb98bd6944b8e3</originalsourceid><addsrcrecordid>eNp9kEtOwzAQhi0EEqVwAVaWWAf8ip0sUXlKFSwAsbQcx6nSpnHxpC3suAM35CQ4pBI7FtZ4Zr5_ZvQjdErJOSVEXYAgnIqEMB5fqkQi99CIZkQlhBO2j0aM8SzhkvBDdAQwJ4QrKsQIvb86s8Cm3LgAJtSmwa3rtj4sAFc-YPDNpm5n_X9rQolNW-K67WGHV8EXjVtCX9hh7Com1i9XwQHUsYsfzKZ24fvz66nzCwfYva1NV_sWjtFBZRpwJ7s4Ri8318-Tu2T6eHs_uZwmlinSJVLRjDIhhc2UslaqlAupbFk5JrlNFSNGlEQWVKYpKXNZVNIWeVaUMheiyBwfo7Nhbjz3be2g03O_Dm1cqVlOVZpRRWmk2EDZ4AGCq_Qq1EsTPjQlundYDw7r6LD-dVjLKOKDCCLczlz4G_2P6gcZ8oEz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917581711</pqid></control><display><type>article</type><title>Weak adversarial networks for solving forward and inverse problems involving 2D incompressible Navier–Stokes equations</title><source>SpringerLink Journals</source><creator>Li, Wen-Ran ; Yang, Rong ; Yang, Xin-Guang</creator><creatorcontrib>Li, Wen-Ran ; Yang, Rong ; Yang, Xin-Guang</creatorcontrib><description>In this paper, we study the weak adversarial network (WAN) (Zang et al. in J Comput Phys 411:109409, 2020) method for solving Navier–Stokes (NS) equation numerically, including both forward and inverse problems. Firstly, the NS equation is converted to the biharmonic formulation leveraging the stream function, then the biharmonic formulation equation contributes to a test function as an operator. Furthermore, the underlying NS equation is discretized by using two neural networks based on weak formulation. Finally, numerical results for some experiments are presented, this method shows advantages of stability and accuracy compared with other algorithms, especially this method is useful for problems which have no strong solutions.</description><identifier>ISSN: 2238-3603</identifier><identifier>EISSN: 1807-0302</identifier><identifier>DOI: 10.1007/s40314-023-02574-6</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Applications of Mathematics ; Computational Mathematics and Numerical Analysis ; Fluid flow ; Inverse problems ; Mathematical Applications in Computer Science ; Mathematical Applications in the Physical Sciences ; Mathematics ; Mathematics and Statistics ; Navier-Stokes equations ; Neural networks ; Wide area networks</subject><ispartof>Computational &amp; applied mathematics, 2024-02, Vol.43 (1), Article 61</ispartof><rights>The Author(s) under exclusive licence to Sociedade Brasileira de Matemática Aplicada e Computacional 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-671812464c877cc6753467cdfe263c5720a4d06b16550d96bf6cb98bd6944b8e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40314-023-02574-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40314-023-02574-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Li, Wen-Ran</creatorcontrib><creatorcontrib>Yang, Rong</creatorcontrib><creatorcontrib>Yang, Xin-Guang</creatorcontrib><title>Weak adversarial networks for solving forward and inverse problems involving 2D incompressible Navier–Stokes equations</title><title>Computational &amp; applied mathematics</title><addtitle>Comp. Appl. Math</addtitle><description>In this paper, we study the weak adversarial network (WAN) (Zang et al. in J Comput Phys 411:109409, 2020) method for solving Navier–Stokes (NS) equation numerically, including both forward and inverse problems. Firstly, the NS equation is converted to the biharmonic formulation leveraging the stream function, then the biharmonic formulation equation contributes to a test function as an operator. Furthermore, the underlying NS equation is discretized by using two neural networks based on weak formulation. Finally, numerical results for some experiments are presented, this method shows advantages of stability and accuracy compared with other algorithms, especially this method is useful for problems which have no strong solutions.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Fluid flow</subject><subject>Inverse problems</subject><subject>Mathematical Applications in Computer Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Navier-Stokes equations</subject><subject>Neural networks</subject><subject>Wide area networks</subject><issn>2238-3603</issn><issn>1807-0302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtOwzAQhi0EEqVwAVaWWAf8ip0sUXlKFSwAsbQcx6nSpnHxpC3suAM35CQ4pBI7FtZ4Zr5_ZvQjdErJOSVEXYAgnIqEMB5fqkQi99CIZkQlhBO2j0aM8SzhkvBDdAQwJ4QrKsQIvb86s8Cm3LgAJtSmwa3rtj4sAFc-YPDNpm5n_X9rQolNW-K67WGHV8EXjVtCX9hh7Com1i9XwQHUsYsfzKZ24fvz66nzCwfYva1NV_sWjtFBZRpwJ7s4Ri8318-Tu2T6eHs_uZwmlinSJVLRjDIhhc2UslaqlAupbFk5JrlNFSNGlEQWVKYpKXNZVNIWeVaUMheiyBwfo7Nhbjz3be2g03O_Dm1cqVlOVZpRRWmk2EDZ4AGCq_Qq1EsTPjQlundYDw7r6LD-dVjLKOKDCCLczlz4G_2P6gcZ8oEz</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Li, Wen-Ran</creator><creator>Yang, Rong</creator><creator>Yang, Xin-Guang</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240201</creationdate><title>Weak adversarial networks for solving forward and inverse problems involving 2D incompressible Navier–Stokes equations</title><author>Li, Wen-Ran ; Yang, Rong ; Yang, Xin-Guang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-671812464c877cc6753467cdfe263c5720a4d06b16550d96bf6cb98bd6944b8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Fluid flow</topic><topic>Inverse problems</topic><topic>Mathematical Applications in Computer Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Navier-Stokes equations</topic><topic>Neural networks</topic><topic>Wide area networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Wen-Ran</creatorcontrib><creatorcontrib>Yang, Rong</creatorcontrib><creatorcontrib>Yang, Xin-Guang</creatorcontrib><collection>CrossRef</collection><jtitle>Computational &amp; applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Wen-Ran</au><au>Yang, Rong</au><au>Yang, Xin-Guang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weak adversarial networks for solving forward and inverse problems involving 2D incompressible Navier–Stokes equations</atitle><jtitle>Computational &amp; applied mathematics</jtitle><stitle>Comp. Appl. Math</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>43</volume><issue>1</issue><artnum>61</artnum><issn>2238-3603</issn><eissn>1807-0302</eissn><abstract>In this paper, we study the weak adversarial network (WAN) (Zang et al. in J Comput Phys 411:109409, 2020) method for solving Navier–Stokes (NS) equation numerically, including both forward and inverse problems. Firstly, the NS equation is converted to the biharmonic formulation leveraging the stream function, then the biharmonic formulation equation contributes to a test function as an operator. Furthermore, the underlying NS equation is discretized by using two neural networks based on weak formulation. Finally, numerical results for some experiments are presented, this method shows advantages of stability and accuracy compared with other algorithms, especially this method is useful for problems which have no strong solutions.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40314-023-02574-6</doi></addata></record>
fulltext fulltext
identifier ISSN: 2238-3603
ispartof Computational & applied mathematics, 2024-02, Vol.43 (1), Article 61
issn 2238-3603
1807-0302
language eng
recordid cdi_proquest_journals_2917581711
source SpringerLink Journals
subjects Algorithms
Applications of Mathematics
Computational Mathematics and Numerical Analysis
Fluid flow
Inverse problems
Mathematical Applications in Computer Science
Mathematical Applications in the Physical Sciences
Mathematics
Mathematics and Statistics
Navier-Stokes equations
Neural networks
Wide area networks
title Weak adversarial networks for solving forward and inverse problems involving 2D incompressible Navier–Stokes equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T07%3A57%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weak%20adversarial%20networks%20for%20solving%20forward%20and%20inverse%20problems%20involving%202D%20incompressible%20Navier%E2%80%93Stokes%20equations&rft.jtitle=Computational%20&%20applied%20mathematics&rft.au=Li,%20Wen-Ran&rft.date=2024-02-01&rft.volume=43&rft.issue=1&rft.artnum=61&rft.issn=2238-3603&rft.eissn=1807-0302&rft_id=info:doi/10.1007/s40314-023-02574-6&rft_dat=%3Cproquest_cross%3E2917581711%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917581711&rft_id=info:pmid/&rfr_iscdi=true