Video–text retrieval via multi-modal masked transformer and adaptive attribute-aware graph convolutional network

Despite significant advancements in deep learning-based video–text retrieval methods, three challenges persist: the alignment of fine-grained semantic information from text and video, ensuring that the obtained textual and video feature representations capture primary semantic information while main...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia systems 2024-02, Vol.30 (1), Article 35
Hauptverfasser: Lv, Gang, Sun, Yining, Nian, Fudong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Multimedia systems
container_volume 30
creator Lv, Gang
Sun, Yining
Nian, Fudong
description Despite significant advancements in deep learning-based video–text retrieval methods, three challenges persist: the alignment of fine-grained semantic information from text and video, ensuring that the obtained textual and video feature representations capture primary semantic information while maintaining good discriminability, and measuring the semantic similarity between different instances. To tackle these issues, we introduce an end-to-end video–text retrieval framework which exploit Multi-Modal Masked Transformer and Adaptive Attribute-Aware Graph Convolutional Network (M 3 Trans-A 3 GCN). Specifically, the features extracted from videos and texts are fed into M 3 Trans to jointly integrate the multi-modal content and mask irrelevant multi-modal context. Subsequently, a novel GCN with an adaptive correlation matrix (i.e., A 3 GCN) is constructed to obtain discriminative video representation for video–text retrieval. To better measure the semantic similarity between video–text pairs during training, we propose a novel Text-semantic-guided Multi-Modal Cross-Entropy (TMCE) loss function. Here, the similarity between different video–text pairs within a batch is computed based on the features of the corresponding text rather than their instance labels. Comprehensive experimental results on three benchmark datasets, MSR-VTT, MSVD and LSMDC, demonstrate the superiority of M 3 Trans-A 3 GCN, compared with the state-of-the-art methods in video–text retrieval.
doi_str_mv 10.1007/s00530-023-01205-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917581655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917581655</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-8ea93c3bfbf1481a0073f216695162eb1fe27dc5dc853639943f4f35f51ff8f03</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssTb4ESfOElW8pEpsgK3lJuOSNomL7bSw4x_4Q74EQ5DYsRqNdM_VzEHolNFzRmlxESiVghLKBaGMU0nUHpqwTHDClOL7aELLjJOszPkhOgphRSkrckEnyD81NbjP948IrxF7iL6BrWnxtjG4G9rYkM7Vae9MWEONozd9sM534LHpa2xqs4nNFrCJiVwMEYjZGQ946c3mGVeu37p2iI3rU0cPcef8-hgdWNMGOPmdU_R4ffUwuyXz-5u72eWcVLygkSgwpajEwi4syxQz6U1hOcvzUrKcw4JZ4EVdybpSUuSiLDNhMyuklcxaZamYorOxd-PdywAh6pUbfDokaF6yQiqWS5lSfExV3oXgweqNbzrj3zSj-tutHt3q5Fb_uNUqQWKEQgr3S_B_1f9QX5_2f6o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917581655</pqid></control><display><type>article</type><title>Video–text retrieval via multi-modal masked transformer and adaptive attribute-aware graph convolutional network</title><source>SpringerLink Journals - AutoHoldings</source><creator>Lv, Gang ; Sun, Yining ; Nian, Fudong</creator><creatorcontrib>Lv, Gang ; Sun, Yining ; Nian, Fudong</creatorcontrib><description>Despite significant advancements in deep learning-based video–text retrieval methods, three challenges persist: the alignment of fine-grained semantic information from text and video, ensuring that the obtained textual and video feature representations capture primary semantic information while maintaining good discriminability, and measuring the semantic similarity between different instances. To tackle these issues, we introduce an end-to-end video–text retrieval framework which exploit Multi-Modal Masked Transformer and Adaptive Attribute-Aware Graph Convolutional Network (M 3 Trans-A 3 GCN). Specifically, the features extracted from videos and texts are fed into M 3 Trans to jointly integrate the multi-modal content and mask irrelevant multi-modal context. Subsequently, a novel GCN with an adaptive correlation matrix (i.e., A 3 GCN) is constructed to obtain discriminative video representation for video–text retrieval. To better measure the semantic similarity between video–text pairs during training, we propose a novel Text-semantic-guided Multi-Modal Cross-Entropy (TMCE) loss function. Here, the similarity between different video–text pairs within a batch is computed based on the features of the corresponding text rather than their instance labels. Comprehensive experimental results on three benchmark datasets, MSR-VTT, MSVD and LSMDC, demonstrate the superiority of M 3 Trans-A 3 GCN, compared with the state-of-the-art methods in video–text retrieval.</description><identifier>ISSN: 0942-4962</identifier><identifier>EISSN: 1432-1882</identifier><identifier>DOI: 10.1007/s00530-023-01205-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial neural networks ; Computer Communication Networks ; Computer Graphics ; Computer Science ; Correlation analysis ; Cryptology ; Data Storage Representation ; Multimedia Information Systems ; Operating Systems ; Regular Paper ; Representations ; Retrieval ; Semantics ; Similarity ; Transformers</subject><ispartof>Multimedia systems, 2024-02, Vol.30 (1), Article 35</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-8ea93c3bfbf1481a0073f216695162eb1fe27dc5dc853639943f4f35f51ff8f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00530-023-01205-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00530-023-01205-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Lv, Gang</creatorcontrib><creatorcontrib>Sun, Yining</creatorcontrib><creatorcontrib>Nian, Fudong</creatorcontrib><title>Video–text retrieval via multi-modal masked transformer and adaptive attribute-aware graph convolutional network</title><title>Multimedia systems</title><addtitle>Multimedia Systems</addtitle><description>Despite significant advancements in deep learning-based video–text retrieval methods, three challenges persist: the alignment of fine-grained semantic information from text and video, ensuring that the obtained textual and video feature representations capture primary semantic information while maintaining good discriminability, and measuring the semantic similarity between different instances. To tackle these issues, we introduce an end-to-end video–text retrieval framework which exploit Multi-Modal Masked Transformer and Adaptive Attribute-Aware Graph Convolutional Network (M 3 Trans-A 3 GCN). Specifically, the features extracted from videos and texts are fed into M 3 Trans to jointly integrate the multi-modal content and mask irrelevant multi-modal context. Subsequently, a novel GCN with an adaptive correlation matrix (i.e., A 3 GCN) is constructed to obtain discriminative video representation for video–text retrieval. To better measure the semantic similarity between video–text pairs during training, we propose a novel Text-semantic-guided Multi-Modal Cross-Entropy (TMCE) loss function. Here, the similarity between different video–text pairs within a batch is computed based on the features of the corresponding text rather than their instance labels. Comprehensive experimental results on three benchmark datasets, MSR-VTT, MSVD and LSMDC, demonstrate the superiority of M 3 Trans-A 3 GCN, compared with the state-of-the-art methods in video–text retrieval.</description><subject>Artificial neural networks</subject><subject>Computer Communication Networks</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Correlation analysis</subject><subject>Cryptology</subject><subject>Data Storage Representation</subject><subject>Multimedia Information Systems</subject><subject>Operating Systems</subject><subject>Regular Paper</subject><subject>Representations</subject><subject>Retrieval</subject><subject>Semantics</subject><subject>Similarity</subject><subject>Transformers</subject><issn>0942-4962</issn><issn>1432-1882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6wssTb4ESfOElW8pEpsgK3lJuOSNomL7bSw4x_4Q74EQ5DYsRqNdM_VzEHolNFzRmlxESiVghLKBaGMU0nUHpqwTHDClOL7aELLjJOszPkhOgphRSkrckEnyD81NbjP948IrxF7iL6BrWnxtjG4G9rYkM7Vae9MWEONozd9sM534LHpa2xqs4nNFrCJiVwMEYjZGQ946c3mGVeu37p2iI3rU0cPcef8-hgdWNMGOPmdU_R4ffUwuyXz-5u72eWcVLygkSgwpajEwi4syxQz6U1hOcvzUrKcw4JZ4EVdybpSUuSiLDNhMyuklcxaZamYorOxd-PdywAh6pUbfDokaF6yQiqWS5lSfExV3oXgweqNbzrj3zSj-tutHt3q5Fb_uNUqQWKEQgr3S_B_1f9QX5_2f6o</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Lv, Gang</creator><creator>Sun, Yining</creator><creator>Nian, Fudong</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240201</creationdate><title>Video–text retrieval via multi-modal masked transformer and adaptive attribute-aware graph convolutional network</title><author>Lv, Gang ; Sun, Yining ; Nian, Fudong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-8ea93c3bfbf1481a0073f216695162eb1fe27dc5dc853639943f4f35f51ff8f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Computer Communication Networks</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Correlation analysis</topic><topic>Cryptology</topic><topic>Data Storage Representation</topic><topic>Multimedia Information Systems</topic><topic>Operating Systems</topic><topic>Regular Paper</topic><topic>Representations</topic><topic>Retrieval</topic><topic>Semantics</topic><topic>Similarity</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lv, Gang</creatorcontrib><creatorcontrib>Sun, Yining</creatorcontrib><creatorcontrib>Nian, Fudong</creatorcontrib><collection>CrossRef</collection><jtitle>Multimedia systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lv, Gang</au><au>Sun, Yining</au><au>Nian, Fudong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Video–text retrieval via multi-modal masked transformer and adaptive attribute-aware graph convolutional network</atitle><jtitle>Multimedia systems</jtitle><stitle>Multimedia Systems</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>30</volume><issue>1</issue><artnum>35</artnum><issn>0942-4962</issn><eissn>1432-1882</eissn><abstract>Despite significant advancements in deep learning-based video–text retrieval methods, three challenges persist: the alignment of fine-grained semantic information from text and video, ensuring that the obtained textual and video feature representations capture primary semantic information while maintaining good discriminability, and measuring the semantic similarity between different instances. To tackle these issues, we introduce an end-to-end video–text retrieval framework which exploit Multi-Modal Masked Transformer and Adaptive Attribute-Aware Graph Convolutional Network (M 3 Trans-A 3 GCN). Specifically, the features extracted from videos and texts are fed into M 3 Trans to jointly integrate the multi-modal content and mask irrelevant multi-modal context. Subsequently, a novel GCN with an adaptive correlation matrix (i.e., A 3 GCN) is constructed to obtain discriminative video representation for video–text retrieval. To better measure the semantic similarity between video–text pairs during training, we propose a novel Text-semantic-guided Multi-Modal Cross-Entropy (TMCE) loss function. Here, the similarity between different video–text pairs within a batch is computed based on the features of the corresponding text rather than their instance labels. Comprehensive experimental results on three benchmark datasets, MSR-VTT, MSVD and LSMDC, demonstrate the superiority of M 3 Trans-A 3 GCN, compared with the state-of-the-art methods in video–text retrieval.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00530-023-01205-8</doi></addata></record>
fulltext fulltext
identifier ISSN: 0942-4962
ispartof Multimedia systems, 2024-02, Vol.30 (1), Article 35
issn 0942-4962
1432-1882
language eng
recordid cdi_proquest_journals_2917581655
source SpringerLink Journals - AutoHoldings
subjects Artificial neural networks
Computer Communication Networks
Computer Graphics
Computer Science
Correlation analysis
Cryptology
Data Storage Representation
Multimedia Information Systems
Operating Systems
Regular Paper
Representations
Retrieval
Semantics
Similarity
Transformers
title Video–text retrieval via multi-modal masked transformer and adaptive attribute-aware graph convolutional network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T04%3A53%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Video%E2%80%93text%20retrieval%20via%20multi-modal%20masked%20transformer%20and%20adaptive%20attribute-aware%20graph%20convolutional%20network&rft.jtitle=Multimedia%20systems&rft.au=Lv,%20Gang&rft.date=2024-02-01&rft.volume=30&rft.issue=1&rft.artnum=35&rft.issn=0942-4962&rft.eissn=1432-1882&rft_id=info:doi/10.1007/s00530-023-01205-8&rft_dat=%3Cproquest_cross%3E2917581655%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917581655&rft_id=info:pmid/&rfr_iscdi=true