Video–text retrieval via multi-modal masked transformer and adaptive attribute-aware graph convolutional network
Despite significant advancements in deep learning-based video–text retrieval methods, three challenges persist: the alignment of fine-grained semantic information from text and video, ensuring that the obtained textual and video feature representations capture primary semantic information while main...
Gespeichert in:
Veröffentlicht in: | Multimedia systems 2024-02, Vol.30 (1), Article 35 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Multimedia systems |
container_volume | 30 |
creator | Lv, Gang Sun, Yining Nian, Fudong |
description | Despite significant advancements in deep learning-based video–text retrieval methods, three challenges persist: the alignment of fine-grained semantic information from text and video, ensuring that the obtained textual and video feature representations capture primary semantic information while maintaining good discriminability, and measuring the semantic similarity between different instances. To tackle these issues, we introduce an end-to-end video–text retrieval framework which exploit Multi-Modal Masked Transformer and Adaptive Attribute-Aware Graph Convolutional Network (M
3
Trans-A
3
GCN). Specifically, the features extracted from videos and texts are fed into M
3
Trans to jointly integrate the multi-modal content and mask irrelevant multi-modal context. Subsequently, a novel GCN with an adaptive correlation matrix (i.e., A
3
GCN) is constructed to obtain discriminative video representation for video–text retrieval. To better measure the semantic similarity between video–text pairs during training, we propose a novel Text-semantic-guided Multi-Modal Cross-Entropy (TMCE) loss function. Here, the similarity between different video–text pairs within a batch is computed based on the features of the corresponding text rather than their instance labels. Comprehensive experimental results on three benchmark datasets, MSR-VTT, MSVD and LSMDC, demonstrate the superiority of M
3
Trans-A
3
GCN, compared with the state-of-the-art methods in video–text retrieval. |
doi_str_mv | 10.1007/s00530-023-01205-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917581655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917581655</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-8ea93c3bfbf1481a0073f216695162eb1fe27dc5dc853639943f4f35f51ff8f03</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssTb4ESfOElW8pEpsgK3lJuOSNomL7bSw4x_4Q74EQ5DYsRqNdM_VzEHolNFzRmlxESiVghLKBaGMU0nUHpqwTHDClOL7aELLjJOszPkhOgphRSkrckEnyD81NbjP948IrxF7iL6BrWnxtjG4G9rYkM7Vae9MWEONozd9sM534LHpa2xqs4nNFrCJiVwMEYjZGQ946c3mGVeu37p2iI3rU0cPcef8-hgdWNMGOPmdU_R4ffUwuyXz-5u72eWcVLygkSgwpajEwi4syxQz6U1hOcvzUrKcw4JZ4EVdybpSUuSiLDNhMyuklcxaZamYorOxd-PdywAh6pUbfDokaF6yQiqWS5lSfExV3oXgweqNbzrj3zSj-tutHt3q5Fb_uNUqQWKEQgr3S_B_1f9QX5_2f6o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917581655</pqid></control><display><type>article</type><title>Video–text retrieval via multi-modal masked transformer and adaptive attribute-aware graph convolutional network</title><source>SpringerLink Journals - AutoHoldings</source><creator>Lv, Gang ; Sun, Yining ; Nian, Fudong</creator><creatorcontrib>Lv, Gang ; Sun, Yining ; Nian, Fudong</creatorcontrib><description>Despite significant advancements in deep learning-based video–text retrieval methods, three challenges persist: the alignment of fine-grained semantic information from text and video, ensuring that the obtained textual and video feature representations capture primary semantic information while maintaining good discriminability, and measuring the semantic similarity between different instances. To tackle these issues, we introduce an end-to-end video–text retrieval framework which exploit Multi-Modal Masked Transformer and Adaptive Attribute-Aware Graph Convolutional Network (M
3
Trans-A
3
GCN). Specifically, the features extracted from videos and texts are fed into M
3
Trans to jointly integrate the multi-modal content and mask irrelevant multi-modal context. Subsequently, a novel GCN with an adaptive correlation matrix (i.e., A
3
GCN) is constructed to obtain discriminative video representation for video–text retrieval. To better measure the semantic similarity between video–text pairs during training, we propose a novel Text-semantic-guided Multi-Modal Cross-Entropy (TMCE) loss function. Here, the similarity between different video–text pairs within a batch is computed based on the features of the corresponding text rather than their instance labels. Comprehensive experimental results on three benchmark datasets, MSR-VTT, MSVD and LSMDC, demonstrate the superiority of M
3
Trans-A
3
GCN, compared with the state-of-the-art methods in video–text retrieval.</description><identifier>ISSN: 0942-4962</identifier><identifier>EISSN: 1432-1882</identifier><identifier>DOI: 10.1007/s00530-023-01205-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial neural networks ; Computer Communication Networks ; Computer Graphics ; Computer Science ; Correlation analysis ; Cryptology ; Data Storage Representation ; Multimedia Information Systems ; Operating Systems ; Regular Paper ; Representations ; Retrieval ; Semantics ; Similarity ; Transformers</subject><ispartof>Multimedia systems, 2024-02, Vol.30 (1), Article 35</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-8ea93c3bfbf1481a0073f216695162eb1fe27dc5dc853639943f4f35f51ff8f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00530-023-01205-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00530-023-01205-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Lv, Gang</creatorcontrib><creatorcontrib>Sun, Yining</creatorcontrib><creatorcontrib>Nian, Fudong</creatorcontrib><title>Video–text retrieval via multi-modal masked transformer and adaptive attribute-aware graph convolutional network</title><title>Multimedia systems</title><addtitle>Multimedia Systems</addtitle><description>Despite significant advancements in deep learning-based video–text retrieval methods, three challenges persist: the alignment of fine-grained semantic information from text and video, ensuring that the obtained textual and video feature representations capture primary semantic information while maintaining good discriminability, and measuring the semantic similarity between different instances. To tackle these issues, we introduce an end-to-end video–text retrieval framework which exploit Multi-Modal Masked Transformer and Adaptive Attribute-Aware Graph Convolutional Network (M
3
Trans-A
3
GCN). Specifically, the features extracted from videos and texts are fed into M
3
Trans to jointly integrate the multi-modal content and mask irrelevant multi-modal context. Subsequently, a novel GCN with an adaptive correlation matrix (i.e., A
3
GCN) is constructed to obtain discriminative video representation for video–text retrieval. To better measure the semantic similarity between video–text pairs during training, we propose a novel Text-semantic-guided Multi-Modal Cross-Entropy (TMCE) loss function. Here, the similarity between different video–text pairs within a batch is computed based on the features of the corresponding text rather than their instance labels. Comprehensive experimental results on three benchmark datasets, MSR-VTT, MSVD and LSMDC, demonstrate the superiority of M
3
Trans-A
3
GCN, compared with the state-of-the-art methods in video–text retrieval.</description><subject>Artificial neural networks</subject><subject>Computer Communication Networks</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Correlation analysis</subject><subject>Cryptology</subject><subject>Data Storage Representation</subject><subject>Multimedia Information Systems</subject><subject>Operating Systems</subject><subject>Regular Paper</subject><subject>Representations</subject><subject>Retrieval</subject><subject>Semantics</subject><subject>Similarity</subject><subject>Transformers</subject><issn>0942-4962</issn><issn>1432-1882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6wssTb4ESfOElW8pEpsgK3lJuOSNomL7bSw4x_4Q74EQ5DYsRqNdM_VzEHolNFzRmlxESiVghLKBaGMU0nUHpqwTHDClOL7aELLjJOszPkhOgphRSkrckEnyD81NbjP948IrxF7iL6BrWnxtjG4G9rYkM7Vae9MWEONozd9sM534LHpa2xqs4nNFrCJiVwMEYjZGQ946c3mGVeu37p2iI3rU0cPcef8-hgdWNMGOPmdU_R4ffUwuyXz-5u72eWcVLygkSgwpajEwi4syxQz6U1hOcvzUrKcw4JZ4EVdybpSUuSiLDNhMyuklcxaZamYorOxd-PdywAh6pUbfDokaF6yQiqWS5lSfExV3oXgweqNbzrj3zSj-tutHt3q5Fb_uNUqQWKEQgr3S_B_1f9QX5_2f6o</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Lv, Gang</creator><creator>Sun, Yining</creator><creator>Nian, Fudong</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240201</creationdate><title>Video–text retrieval via multi-modal masked transformer and adaptive attribute-aware graph convolutional network</title><author>Lv, Gang ; Sun, Yining ; Nian, Fudong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-8ea93c3bfbf1481a0073f216695162eb1fe27dc5dc853639943f4f35f51ff8f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Computer Communication Networks</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Correlation analysis</topic><topic>Cryptology</topic><topic>Data Storage Representation</topic><topic>Multimedia Information Systems</topic><topic>Operating Systems</topic><topic>Regular Paper</topic><topic>Representations</topic><topic>Retrieval</topic><topic>Semantics</topic><topic>Similarity</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lv, Gang</creatorcontrib><creatorcontrib>Sun, Yining</creatorcontrib><creatorcontrib>Nian, Fudong</creatorcontrib><collection>CrossRef</collection><jtitle>Multimedia systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lv, Gang</au><au>Sun, Yining</au><au>Nian, Fudong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Video–text retrieval via multi-modal masked transformer and adaptive attribute-aware graph convolutional network</atitle><jtitle>Multimedia systems</jtitle><stitle>Multimedia Systems</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>30</volume><issue>1</issue><artnum>35</artnum><issn>0942-4962</issn><eissn>1432-1882</eissn><abstract>Despite significant advancements in deep learning-based video–text retrieval methods, three challenges persist: the alignment of fine-grained semantic information from text and video, ensuring that the obtained textual and video feature representations capture primary semantic information while maintaining good discriminability, and measuring the semantic similarity between different instances. To tackle these issues, we introduce an end-to-end video–text retrieval framework which exploit Multi-Modal Masked Transformer and Adaptive Attribute-Aware Graph Convolutional Network (M
3
Trans-A
3
GCN). Specifically, the features extracted from videos and texts are fed into M
3
Trans to jointly integrate the multi-modal content and mask irrelevant multi-modal context. Subsequently, a novel GCN with an adaptive correlation matrix (i.e., A
3
GCN) is constructed to obtain discriminative video representation for video–text retrieval. To better measure the semantic similarity between video–text pairs during training, we propose a novel Text-semantic-guided Multi-Modal Cross-Entropy (TMCE) loss function. Here, the similarity between different video–text pairs within a batch is computed based on the features of the corresponding text rather than their instance labels. Comprehensive experimental results on three benchmark datasets, MSR-VTT, MSVD and LSMDC, demonstrate the superiority of M
3
Trans-A
3
GCN, compared with the state-of-the-art methods in video–text retrieval.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00530-023-01205-8</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0942-4962 |
ispartof | Multimedia systems, 2024-02, Vol.30 (1), Article 35 |
issn | 0942-4962 1432-1882 |
language | eng |
recordid | cdi_proquest_journals_2917581655 |
source | SpringerLink Journals - AutoHoldings |
subjects | Artificial neural networks Computer Communication Networks Computer Graphics Computer Science Correlation analysis Cryptology Data Storage Representation Multimedia Information Systems Operating Systems Regular Paper Representations Retrieval Semantics Similarity Transformers |
title | Video–text retrieval via multi-modal masked transformer and adaptive attribute-aware graph convolutional network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T04%3A53%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Video%E2%80%93text%20retrieval%20via%20multi-modal%20masked%20transformer%20and%20adaptive%20attribute-aware%20graph%20convolutional%20network&rft.jtitle=Multimedia%20systems&rft.au=Lv,%20Gang&rft.date=2024-02-01&rft.volume=30&rft.issue=1&rft.artnum=35&rft.issn=0942-4962&rft.eissn=1432-1882&rft_id=info:doi/10.1007/s00530-023-01205-8&rft_dat=%3Cproquest_cross%3E2917581655%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917581655&rft_id=info:pmid/&rfr_iscdi=true |