Bi‐Directional Electrolytic Reduction of CO2 to Mesoporous Carbons with Regulated Structure and Surface Functional Groups for Zn‐ion Capacitors
Zn‐ion capacitors (ZICs) take advantage of batteries and supercapacitors in delivering high energy and power densities for energy storage by using porous carbons due to their low cost, lightweight, high conductivity, and good stability. However, it remains a grand challenge to regulate the mesoporou...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2024-01, Vol.34 (4), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 34 |
creator | Yu, Ao Zhao, Yinan Zhang, Wei Yang, Wenhao Zhu, Longtao Peng, Ping Li, Fang‐Fang Yang, Yang |
description | Zn‐ion capacitors (ZICs) take advantage of batteries and supercapacitors in delivering high energy and power densities for energy storage by using porous carbons due to their low cost, lightweight, high conductivity, and good stability. However, it remains a grand challenge to regulate the mesoporous structures of carbons, including pore sizes and surface functional groups, which are essential for ion transport and electrochemical reactions of ZICs. Herein, a bi‐directional electrolysis strategy is developed to directly reduce CO2 to oxygen‐rich mesoporous carbons (OMCs) with adjustable pore sizes and oxygen‐bearing functional groups, which are preferred for ZICs as theoretically proved by density functional theory (DFT). The designed OMCs exhibit a remarkable energy density of 216.6 Wh kg−1 and performance retention of 90% after 15000 cycles. When assembled in the flexible ZICs, the OMCs demonstrate a high capacitance of 329.5 mAh g−1. This work presents a novel strategy for synthesizing OMCs through a decarbonization process and reveals the crucial role of microstructure and surface functional groups in promoting the performance of ZICs.
CO2‐derived oxygen‐rich mesoporous carbons with optimal pore size and oxygen‐containing functional groups are successfully synthesized via a bi‐directional electrolysis strategy for Zn‐ion capacitors, which exhibit a remarkable energy density of 216.6 Wh kg−1 and performance retention of 90% after 15000 cycles. This work presents a novel strategy for synthesizing energy materials through a decarbonization process. |
doi_str_mv | 10.1002/adfm.202309666 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2917476435</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917476435</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2336-2d9c692957eba28bafcff007f39ea1306cc68c43999a4329db69386b0a835953</originalsourceid><addsrcrecordid>eNo9UMtOwzAQjBBIlMKVsyXOLX6kTnws6QOkVpWgB8TFchwbXKVxsB1VvfEJSPwhX0JCoaed0c7srCaKrhEcIgjxrSj0doghJpBRSk-iHqKIDgjE6ekRo-fz6ML7DYQoSUjci77uzPfH58Q4JYOxlSjBtGyhs-U-GAkeVdH8LoDVIFthECxYKm9r62zjQSZcbisPdia8tdrXphRBFeApuNbVOAVE1bLGaSEVmDXVf8a8ddceaOvAS9XmdwGZqIU0wTp_GZ1pUXp19Tf70Xo2XWf3g8Vq_pCNF4MaE0IHuGCSMsxGicoFTnOhpdYQJpowJRCBVEqaypgwxkRMMCtyykhKcyhSMmIj0o9uDmdrZ98b5QPf2Ma173mOGUrihMakU7GDamdKtee1M1vh9hxB3pXOu9L5sXQ-nsyWR0Z-AHURfFc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917476435</pqid></control><display><type>article</type><title>Bi‐Directional Electrolytic Reduction of CO2 to Mesoporous Carbons with Regulated Structure and Surface Functional Groups for Zn‐ion Capacitors</title><source>Wiley Journals</source><creator>Yu, Ao ; Zhao, Yinan ; Zhang, Wei ; Yang, Wenhao ; Zhu, Longtao ; Peng, Ping ; Li, Fang‐Fang ; Yang, Yang</creator><creatorcontrib>Yu, Ao ; Zhao, Yinan ; Zhang, Wei ; Yang, Wenhao ; Zhu, Longtao ; Peng, Ping ; Li, Fang‐Fang ; Yang, Yang</creatorcontrib><description>Zn‐ion capacitors (ZICs) take advantage of batteries and supercapacitors in delivering high energy and power densities for energy storage by using porous carbons due to their low cost, lightweight, high conductivity, and good stability. However, it remains a grand challenge to regulate the mesoporous structures of carbons, including pore sizes and surface functional groups, which are essential for ion transport and electrochemical reactions of ZICs. Herein, a bi‐directional electrolysis strategy is developed to directly reduce CO2 to oxygen‐rich mesoporous carbons (OMCs) with adjustable pore sizes and oxygen‐bearing functional groups, which are preferred for ZICs as theoretically proved by density functional theory (DFT). The designed OMCs exhibit a remarkable energy density of 216.6 Wh kg−1 and performance retention of 90% after 15000 cycles. When assembled in the flexible ZICs, the OMCs demonstrate a high capacitance of 329.5 mAh g−1. This work presents a novel strategy for synthesizing OMCs through a decarbonization process and reveals the crucial role of microstructure and surface functional groups in promoting the performance of ZICs.
CO2‐derived oxygen‐rich mesoporous carbons with optimal pore size and oxygen‐containing functional groups are successfully synthesized via a bi‐directional electrolysis strategy for Zn‐ion capacitors, which exhibit a remarkable energy density of 216.6 Wh kg−1 and performance retention of 90% after 15000 cycles. This work presents a novel strategy for synthesizing energy materials through a decarbonization process.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202309666</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>bi‐directional electrolysis ; Capacitors ; Carbon dioxide ; Chemical reactions ; CO2 electroreduction ; Density functional theory ; Electrolysis ; Energy storage ; Functional groups ; Ion transport ; mesoporous carbons ; Oxygen ; Reduction (electrolytic) ; surface functional groups ; Zn‐ion capacitors</subject><ispartof>Advanced functional materials, 2024-01, Vol.34 (4), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4410-6021</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202309666$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202309666$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Yu, Ao</creatorcontrib><creatorcontrib>Zhao, Yinan</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Yang, Wenhao</creatorcontrib><creatorcontrib>Zhu, Longtao</creatorcontrib><creatorcontrib>Peng, Ping</creatorcontrib><creatorcontrib>Li, Fang‐Fang</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><title>Bi‐Directional Electrolytic Reduction of CO2 to Mesoporous Carbons with Regulated Structure and Surface Functional Groups for Zn‐ion Capacitors</title><title>Advanced functional materials</title><description>Zn‐ion capacitors (ZICs) take advantage of batteries and supercapacitors in delivering high energy and power densities for energy storage by using porous carbons due to their low cost, lightweight, high conductivity, and good stability. However, it remains a grand challenge to regulate the mesoporous structures of carbons, including pore sizes and surface functional groups, which are essential for ion transport and electrochemical reactions of ZICs. Herein, a bi‐directional electrolysis strategy is developed to directly reduce CO2 to oxygen‐rich mesoporous carbons (OMCs) with adjustable pore sizes and oxygen‐bearing functional groups, which are preferred for ZICs as theoretically proved by density functional theory (DFT). The designed OMCs exhibit a remarkable energy density of 216.6 Wh kg−1 and performance retention of 90% after 15000 cycles. When assembled in the flexible ZICs, the OMCs demonstrate a high capacitance of 329.5 mAh g−1. This work presents a novel strategy for synthesizing OMCs through a decarbonization process and reveals the crucial role of microstructure and surface functional groups in promoting the performance of ZICs.
CO2‐derived oxygen‐rich mesoporous carbons with optimal pore size and oxygen‐containing functional groups are successfully synthesized via a bi‐directional electrolysis strategy for Zn‐ion capacitors, which exhibit a remarkable energy density of 216.6 Wh kg−1 and performance retention of 90% after 15000 cycles. This work presents a novel strategy for synthesizing energy materials through a decarbonization process.</description><subject>bi‐directional electrolysis</subject><subject>Capacitors</subject><subject>Carbon dioxide</subject><subject>Chemical reactions</subject><subject>CO2 electroreduction</subject><subject>Density functional theory</subject><subject>Electrolysis</subject><subject>Energy storage</subject><subject>Functional groups</subject><subject>Ion transport</subject><subject>mesoporous carbons</subject><subject>Oxygen</subject><subject>Reduction (electrolytic)</subject><subject>surface functional groups</subject><subject>Zn‐ion capacitors</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9UMtOwzAQjBBIlMKVsyXOLX6kTnws6QOkVpWgB8TFchwbXKVxsB1VvfEJSPwhX0JCoaed0c7srCaKrhEcIgjxrSj0doghJpBRSk-iHqKIDgjE6ekRo-fz6ML7DYQoSUjci77uzPfH58Q4JYOxlSjBtGyhs-U-GAkeVdH8LoDVIFthECxYKm9r62zjQSZcbisPdia8tdrXphRBFeApuNbVOAVE1bLGaSEVmDXVf8a8ddceaOvAS9XmdwGZqIU0wTp_GZ1pUXp19Tf70Xo2XWf3g8Vq_pCNF4MaE0IHuGCSMsxGicoFTnOhpdYQJpowJRCBVEqaypgwxkRMMCtyykhKcyhSMmIj0o9uDmdrZ98b5QPf2Ma173mOGUrihMakU7GDamdKtee1M1vh9hxB3pXOu9L5sXQ-nsyWR0Z-AHURfFc</recordid><startdate>20240122</startdate><enddate>20240122</enddate><creator>Yu, Ao</creator><creator>Zhao, Yinan</creator><creator>Zhang, Wei</creator><creator>Yang, Wenhao</creator><creator>Zhu, Longtao</creator><creator>Peng, Ping</creator><creator>Li, Fang‐Fang</creator><creator>Yang, Yang</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4410-6021</orcidid></search><sort><creationdate>20240122</creationdate><title>Bi‐Directional Electrolytic Reduction of CO2 to Mesoporous Carbons with Regulated Structure and Surface Functional Groups for Zn‐ion Capacitors</title><author>Yu, Ao ; Zhao, Yinan ; Zhang, Wei ; Yang, Wenhao ; Zhu, Longtao ; Peng, Ping ; Li, Fang‐Fang ; Yang, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2336-2d9c692957eba28bafcff007f39ea1306cc68c43999a4329db69386b0a835953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>bi‐directional electrolysis</topic><topic>Capacitors</topic><topic>Carbon dioxide</topic><topic>Chemical reactions</topic><topic>CO2 electroreduction</topic><topic>Density functional theory</topic><topic>Electrolysis</topic><topic>Energy storage</topic><topic>Functional groups</topic><topic>Ion transport</topic><topic>mesoporous carbons</topic><topic>Oxygen</topic><topic>Reduction (electrolytic)</topic><topic>surface functional groups</topic><topic>Zn‐ion capacitors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Ao</creatorcontrib><creatorcontrib>Zhao, Yinan</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Yang, Wenhao</creatorcontrib><creatorcontrib>Zhu, Longtao</creatorcontrib><creatorcontrib>Peng, Ping</creatorcontrib><creatorcontrib>Li, Fang‐Fang</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Ao</au><au>Zhao, Yinan</au><au>Zhang, Wei</au><au>Yang, Wenhao</au><au>Zhu, Longtao</au><au>Peng, Ping</au><au>Li, Fang‐Fang</au><au>Yang, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bi‐Directional Electrolytic Reduction of CO2 to Mesoporous Carbons with Regulated Structure and Surface Functional Groups for Zn‐ion Capacitors</atitle><jtitle>Advanced functional materials</jtitle><date>2024-01-22</date><risdate>2024</risdate><volume>34</volume><issue>4</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Zn‐ion capacitors (ZICs) take advantage of batteries and supercapacitors in delivering high energy and power densities for energy storage by using porous carbons due to their low cost, lightweight, high conductivity, and good stability. However, it remains a grand challenge to regulate the mesoporous structures of carbons, including pore sizes and surface functional groups, which are essential for ion transport and electrochemical reactions of ZICs. Herein, a bi‐directional electrolysis strategy is developed to directly reduce CO2 to oxygen‐rich mesoporous carbons (OMCs) with adjustable pore sizes and oxygen‐bearing functional groups, which are preferred for ZICs as theoretically proved by density functional theory (DFT). The designed OMCs exhibit a remarkable energy density of 216.6 Wh kg−1 and performance retention of 90% after 15000 cycles. When assembled in the flexible ZICs, the OMCs demonstrate a high capacitance of 329.5 mAh g−1. This work presents a novel strategy for synthesizing OMCs through a decarbonization process and reveals the crucial role of microstructure and surface functional groups in promoting the performance of ZICs.
CO2‐derived oxygen‐rich mesoporous carbons with optimal pore size and oxygen‐containing functional groups are successfully synthesized via a bi‐directional electrolysis strategy for Zn‐ion capacitors, which exhibit a remarkable energy density of 216.6 Wh kg−1 and performance retention of 90% after 15000 cycles. This work presents a novel strategy for synthesizing energy materials through a decarbonization process.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202309666</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4410-6021</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2024-01, Vol.34 (4), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2917476435 |
source | Wiley Journals |
subjects | bi‐directional electrolysis Capacitors Carbon dioxide Chemical reactions CO2 electroreduction Density functional theory Electrolysis Energy storage Functional groups Ion transport mesoporous carbons Oxygen Reduction (electrolytic) surface functional groups Zn‐ion capacitors |
title | Bi‐Directional Electrolytic Reduction of CO2 to Mesoporous Carbons with Regulated Structure and Surface Functional Groups for Zn‐ion Capacitors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A32%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bi%E2%80%90Directional%20Electrolytic%20Reduction%20of%20CO2%20to%20Mesoporous%20Carbons%20with%20Regulated%20Structure%20and%20Surface%20Functional%20Groups%20for%20Zn%E2%80%90ion%20Capacitors&rft.jtitle=Advanced%20functional%20materials&rft.au=Yu,%20Ao&rft.date=2024-01-22&rft.volume=34&rft.issue=4&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202309666&rft_dat=%3Cproquest_wiley%3E2917476435%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917476435&rft_id=info:pmid/&rfr_iscdi=true |