Bi‐Directional Electrolytic Reduction of CO2 to Mesoporous Carbons with Regulated Structure and Surface Functional Groups for Zn‐ion Capacitors

Zn‐ion capacitors (ZICs) take advantage of batteries and supercapacitors in delivering high energy and power densities for energy storage by using porous carbons due to their low cost, lightweight, high conductivity, and good stability. However, it remains a grand challenge to regulate the mesoporou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2024-01, Vol.34 (4), p.n/a
Hauptverfasser: Yu, Ao, Zhao, Yinan, Zhang, Wei, Yang, Wenhao, Zhu, Longtao, Peng, Ping, Li, Fang‐Fang, Yang, Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 4
container_start_page
container_title Advanced functional materials
container_volume 34
creator Yu, Ao
Zhao, Yinan
Zhang, Wei
Yang, Wenhao
Zhu, Longtao
Peng, Ping
Li, Fang‐Fang
Yang, Yang
description Zn‐ion capacitors (ZICs) take advantage of batteries and supercapacitors in delivering high energy and power densities for energy storage by using porous carbons due to their low cost, lightweight, high conductivity, and good stability. However, it remains a grand challenge to regulate the mesoporous structures of carbons, including pore sizes and surface functional groups, which are essential for ion transport and electrochemical reactions of ZICs. Herein, a bi‐directional electrolysis strategy is developed to directly reduce CO2 to oxygen‐rich mesoporous carbons (OMCs) with adjustable pore sizes and oxygen‐bearing functional groups, which are preferred for ZICs as theoretically proved by density functional theory (DFT). The designed OMCs exhibit a remarkable energy density of 216.6 Wh kg−1 and performance retention of 90% after 15000 cycles. When assembled in the flexible ZICs, the OMCs demonstrate a high capacitance of 329.5 mAh g−1. This work presents a novel strategy for synthesizing OMCs through a decarbonization process and reveals the crucial role of microstructure and surface functional groups in promoting the performance of ZICs. CO2‐derived oxygen‐rich mesoporous carbons with optimal pore size and oxygen‐containing functional groups are successfully synthesized via a bi‐directional electrolysis strategy for Zn‐ion capacitors, which exhibit a remarkable energy density of 216.6 Wh kg−1 and performance retention of 90% after 15000 cycles. This work presents a novel strategy for synthesizing energy materials through a decarbonization process.
doi_str_mv 10.1002/adfm.202309666
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2917476435</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917476435</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2336-2d9c692957eba28bafcff007f39ea1306cc68c43999a4329db69386b0a835953</originalsourceid><addsrcrecordid>eNo9UMtOwzAQjBBIlMKVsyXOLX6kTnws6QOkVpWgB8TFchwbXKVxsB1VvfEJSPwhX0JCoaed0c7srCaKrhEcIgjxrSj0doghJpBRSk-iHqKIDgjE6ekRo-fz6ML7DYQoSUjci77uzPfH58Q4JYOxlSjBtGyhs-U-GAkeVdH8LoDVIFthECxYKm9r62zjQSZcbisPdia8tdrXphRBFeApuNbVOAVE1bLGaSEVmDXVf8a8ddceaOvAS9XmdwGZqIU0wTp_GZ1pUXp19Tf70Xo2XWf3g8Vq_pCNF4MaE0IHuGCSMsxGicoFTnOhpdYQJpowJRCBVEqaypgwxkRMMCtyykhKcyhSMmIj0o9uDmdrZ98b5QPf2Ma173mOGUrihMakU7GDamdKtee1M1vh9hxB3pXOu9L5sXQ-nsyWR0Z-AHURfFc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917476435</pqid></control><display><type>article</type><title>Bi‐Directional Electrolytic Reduction of CO2 to Mesoporous Carbons with Regulated Structure and Surface Functional Groups for Zn‐ion Capacitors</title><source>Wiley Journals</source><creator>Yu, Ao ; Zhao, Yinan ; Zhang, Wei ; Yang, Wenhao ; Zhu, Longtao ; Peng, Ping ; Li, Fang‐Fang ; Yang, Yang</creator><creatorcontrib>Yu, Ao ; Zhao, Yinan ; Zhang, Wei ; Yang, Wenhao ; Zhu, Longtao ; Peng, Ping ; Li, Fang‐Fang ; Yang, Yang</creatorcontrib><description>Zn‐ion capacitors (ZICs) take advantage of batteries and supercapacitors in delivering high energy and power densities for energy storage by using porous carbons due to their low cost, lightweight, high conductivity, and good stability. However, it remains a grand challenge to regulate the mesoporous structures of carbons, including pore sizes and surface functional groups, which are essential for ion transport and electrochemical reactions of ZICs. Herein, a bi‐directional electrolysis strategy is developed to directly reduce CO2 to oxygen‐rich mesoporous carbons (OMCs) with adjustable pore sizes and oxygen‐bearing functional groups, which are preferred for ZICs as theoretically proved by density functional theory (DFT). The designed OMCs exhibit a remarkable energy density of 216.6 Wh kg−1 and performance retention of 90% after 15000 cycles. When assembled in the flexible ZICs, the OMCs demonstrate a high capacitance of 329.5 mAh g−1. This work presents a novel strategy for synthesizing OMCs through a decarbonization process and reveals the crucial role of microstructure and surface functional groups in promoting the performance of ZICs. CO2‐derived oxygen‐rich mesoporous carbons with optimal pore size and oxygen‐containing functional groups are successfully synthesized via a bi‐directional electrolysis strategy for Zn‐ion capacitors, which exhibit a remarkable energy density of 216.6 Wh kg−1 and performance retention of 90% after 15000 cycles. This work presents a novel strategy for synthesizing energy materials through a decarbonization process.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202309666</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>bi‐directional electrolysis ; Capacitors ; Carbon dioxide ; Chemical reactions ; CO2 electroreduction ; Density functional theory ; Electrolysis ; Energy storage ; Functional groups ; Ion transport ; mesoporous carbons ; Oxygen ; Reduction (electrolytic) ; surface functional groups ; Zn‐ion capacitors</subject><ispartof>Advanced functional materials, 2024-01, Vol.34 (4), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4410-6021</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202309666$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202309666$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Yu, Ao</creatorcontrib><creatorcontrib>Zhao, Yinan</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Yang, Wenhao</creatorcontrib><creatorcontrib>Zhu, Longtao</creatorcontrib><creatorcontrib>Peng, Ping</creatorcontrib><creatorcontrib>Li, Fang‐Fang</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><title>Bi‐Directional Electrolytic Reduction of CO2 to Mesoporous Carbons with Regulated Structure and Surface Functional Groups for Zn‐ion Capacitors</title><title>Advanced functional materials</title><description>Zn‐ion capacitors (ZICs) take advantage of batteries and supercapacitors in delivering high energy and power densities for energy storage by using porous carbons due to their low cost, lightweight, high conductivity, and good stability. However, it remains a grand challenge to regulate the mesoporous structures of carbons, including pore sizes and surface functional groups, which are essential for ion transport and electrochemical reactions of ZICs. Herein, a bi‐directional electrolysis strategy is developed to directly reduce CO2 to oxygen‐rich mesoporous carbons (OMCs) with adjustable pore sizes and oxygen‐bearing functional groups, which are preferred for ZICs as theoretically proved by density functional theory (DFT). The designed OMCs exhibit a remarkable energy density of 216.6 Wh kg−1 and performance retention of 90% after 15000 cycles. When assembled in the flexible ZICs, the OMCs demonstrate a high capacitance of 329.5 mAh g−1. This work presents a novel strategy for synthesizing OMCs through a decarbonization process and reveals the crucial role of microstructure and surface functional groups in promoting the performance of ZICs. CO2‐derived oxygen‐rich mesoporous carbons with optimal pore size and oxygen‐containing functional groups are successfully synthesized via a bi‐directional electrolysis strategy for Zn‐ion capacitors, which exhibit a remarkable energy density of 216.6 Wh kg−1 and performance retention of 90% after 15000 cycles. This work presents a novel strategy for synthesizing energy materials through a decarbonization process.</description><subject>bi‐directional electrolysis</subject><subject>Capacitors</subject><subject>Carbon dioxide</subject><subject>Chemical reactions</subject><subject>CO2 electroreduction</subject><subject>Density functional theory</subject><subject>Electrolysis</subject><subject>Energy storage</subject><subject>Functional groups</subject><subject>Ion transport</subject><subject>mesoporous carbons</subject><subject>Oxygen</subject><subject>Reduction (electrolytic)</subject><subject>surface functional groups</subject><subject>Zn‐ion capacitors</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9UMtOwzAQjBBIlMKVsyXOLX6kTnws6QOkVpWgB8TFchwbXKVxsB1VvfEJSPwhX0JCoaed0c7srCaKrhEcIgjxrSj0doghJpBRSk-iHqKIDgjE6ekRo-fz6ML7DYQoSUjci77uzPfH58Q4JYOxlSjBtGyhs-U-GAkeVdH8LoDVIFthECxYKm9r62zjQSZcbisPdia8tdrXphRBFeApuNbVOAVE1bLGaSEVmDXVf8a8ddceaOvAS9XmdwGZqIU0wTp_GZ1pUXp19Tf70Xo2XWf3g8Vq_pCNF4MaE0IHuGCSMsxGicoFTnOhpdYQJpowJRCBVEqaypgwxkRMMCtyykhKcyhSMmIj0o9uDmdrZ98b5QPf2Ma173mOGUrihMakU7GDamdKtee1M1vh9hxB3pXOu9L5sXQ-nsyWR0Z-AHURfFc</recordid><startdate>20240122</startdate><enddate>20240122</enddate><creator>Yu, Ao</creator><creator>Zhao, Yinan</creator><creator>Zhang, Wei</creator><creator>Yang, Wenhao</creator><creator>Zhu, Longtao</creator><creator>Peng, Ping</creator><creator>Li, Fang‐Fang</creator><creator>Yang, Yang</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4410-6021</orcidid></search><sort><creationdate>20240122</creationdate><title>Bi‐Directional Electrolytic Reduction of CO2 to Mesoporous Carbons with Regulated Structure and Surface Functional Groups for Zn‐ion Capacitors</title><author>Yu, Ao ; Zhao, Yinan ; Zhang, Wei ; Yang, Wenhao ; Zhu, Longtao ; Peng, Ping ; Li, Fang‐Fang ; Yang, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2336-2d9c692957eba28bafcff007f39ea1306cc68c43999a4329db69386b0a835953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>bi‐directional electrolysis</topic><topic>Capacitors</topic><topic>Carbon dioxide</topic><topic>Chemical reactions</topic><topic>CO2 electroreduction</topic><topic>Density functional theory</topic><topic>Electrolysis</topic><topic>Energy storage</topic><topic>Functional groups</topic><topic>Ion transport</topic><topic>mesoporous carbons</topic><topic>Oxygen</topic><topic>Reduction (electrolytic)</topic><topic>surface functional groups</topic><topic>Zn‐ion capacitors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Ao</creatorcontrib><creatorcontrib>Zhao, Yinan</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Yang, Wenhao</creatorcontrib><creatorcontrib>Zhu, Longtao</creatorcontrib><creatorcontrib>Peng, Ping</creatorcontrib><creatorcontrib>Li, Fang‐Fang</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Ao</au><au>Zhao, Yinan</au><au>Zhang, Wei</au><au>Yang, Wenhao</au><au>Zhu, Longtao</au><au>Peng, Ping</au><au>Li, Fang‐Fang</au><au>Yang, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bi‐Directional Electrolytic Reduction of CO2 to Mesoporous Carbons with Regulated Structure and Surface Functional Groups for Zn‐ion Capacitors</atitle><jtitle>Advanced functional materials</jtitle><date>2024-01-22</date><risdate>2024</risdate><volume>34</volume><issue>4</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Zn‐ion capacitors (ZICs) take advantage of batteries and supercapacitors in delivering high energy and power densities for energy storage by using porous carbons due to their low cost, lightweight, high conductivity, and good stability. However, it remains a grand challenge to regulate the mesoporous structures of carbons, including pore sizes and surface functional groups, which are essential for ion transport and electrochemical reactions of ZICs. Herein, a bi‐directional electrolysis strategy is developed to directly reduce CO2 to oxygen‐rich mesoporous carbons (OMCs) with adjustable pore sizes and oxygen‐bearing functional groups, which are preferred for ZICs as theoretically proved by density functional theory (DFT). The designed OMCs exhibit a remarkable energy density of 216.6 Wh kg−1 and performance retention of 90% after 15000 cycles. When assembled in the flexible ZICs, the OMCs demonstrate a high capacitance of 329.5 mAh g−1. This work presents a novel strategy for synthesizing OMCs through a decarbonization process and reveals the crucial role of microstructure and surface functional groups in promoting the performance of ZICs. CO2‐derived oxygen‐rich mesoporous carbons with optimal pore size and oxygen‐containing functional groups are successfully synthesized via a bi‐directional electrolysis strategy for Zn‐ion capacitors, which exhibit a remarkable energy density of 216.6 Wh kg−1 and performance retention of 90% after 15000 cycles. This work presents a novel strategy for synthesizing energy materials through a decarbonization process.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202309666</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4410-6021</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-01, Vol.34 (4), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2917476435
source Wiley Journals
subjects bi‐directional electrolysis
Capacitors
Carbon dioxide
Chemical reactions
CO2 electroreduction
Density functional theory
Electrolysis
Energy storage
Functional groups
Ion transport
mesoporous carbons
Oxygen
Reduction (electrolytic)
surface functional groups
Zn‐ion capacitors
title Bi‐Directional Electrolytic Reduction of CO2 to Mesoporous Carbons with Regulated Structure and Surface Functional Groups for Zn‐ion Capacitors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A32%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bi%E2%80%90Directional%20Electrolytic%20Reduction%20of%20CO2%20to%20Mesoporous%20Carbons%20with%20Regulated%20Structure%20and%20Surface%20Functional%20Groups%20for%20Zn%E2%80%90ion%20Capacitors&rft.jtitle=Advanced%20functional%20materials&rft.au=Yu,%20Ao&rft.date=2024-01-22&rft.volume=34&rft.issue=4&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202309666&rft_dat=%3Cproquest_wiley%3E2917476435%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917476435&rft_id=info:pmid/&rfr_iscdi=true