Electronic modulation of sprout-shaped NiCoP nanoarrays by N and Ce doping for efficient overall water splitting
Bifunctional catalysts for hydrogen/oxygen evolution reactions (HER/OER) are urgently needed given the bright future of water splitting hydrogen production technology. Here, the self-supporting N and Ce dual-doped NiCoP nanoarrays (denoted N,Ce-NiCoP/NF) grown on Ni foam are successfully constructed...
Gespeichert in:
Veröffentlicht in: | Nano research 2024, Vol.17 (1), p.282-289 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 289 |
---|---|
container_issue | 1 |
container_start_page | 282 |
container_title | Nano research |
container_volume | 17 |
creator | Zhao, Ting Xu, Guancheng Gong, Bingbing Jiang, Jiahui Zhang, Li |
description | Bifunctional catalysts for hydrogen/oxygen evolution reactions (HER/OER) are urgently needed given the bright future of water splitting hydrogen production technology. Here, the self-supporting N and Ce dual-doped NiCoP nanoarrays (denoted N,Ce-NiCoP/NF) grown on Ni foam are successfully constructed. When the N,Ce-NiCoP/NF simultaneously acts as the HER and OER electrodes, the voltages of 1.54 and 2.14 V are obtained for driving 10 and 500 mA·cm
−2
with a robust durability, and demonstrate its significant potential for practical water electrolysis. According to both experiments and calculations, the electronic structure of NiCoP may be significantly altered by strategically incorporating N and Ce into the lattice, which in turn optimizes the Gibbs free energy of HER/OER intermediates and speeds up the water splitting kinetics. Moreover, the sprout-shaped morphology significantly increases the exposure of active sites and facilitates charge/mass transfer, thereby augmenting catalyst performance. This study offers a potentially effective approach involving the regulation of anion and cation double doping, as well as architectural engineering, for the purpose of designing and optimizing innovative electrocatalysts. |
doi_str_mv | 10.1007/s12274-023-5769-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917419911</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917419911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2319-955fc6f1af913668031e28db3cf07ea7ca80b17fc0c54174b0a5f4402b8b43ed3</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqXwAewssQ54HOe1RFF5SFVhAWvLcWxwldrBdkD9e1wFxIrZzCzuvTNzELoEcg2EVDcBKK1YRmieFVXZZM0RWkDT1BlJdfw7A2Wn6CyELSElBVYv0LgalIzeWSPxzvXTIKJxFjuNw-jdFLPwLkbV441p3TO2wjrhvdgH3O3xBgvb41bh3o3GvmHtPFZaG2mUjdh9Ki-GAX-JqHxKG0yMSXWOTrQYgrr46Uv0erd6aR-y9dP9Y3u7ziTNId1fFFqWGoRuIC_LmuSgaN13udSkUqKSoiYdVFoSWTCoWEdEoRkjtKs7lqs-X6KrOTe98TGpEPnWTd6mlZw2yZCAACQVzCrpXQheaT56sxN-z4HwA1g-g-UJLD-A5U3y0NmTCKWHlP9L_t_0DUP9fC4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917419911</pqid></control><display><type>article</type><title>Electronic modulation of sprout-shaped NiCoP nanoarrays by N and Ce doping for efficient overall water splitting</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zhao, Ting ; Xu, Guancheng ; Gong, Bingbing ; Jiang, Jiahui ; Zhang, Li</creator><creatorcontrib>Zhao, Ting ; Xu, Guancheng ; Gong, Bingbing ; Jiang, Jiahui ; Zhang, Li</creatorcontrib><description>Bifunctional catalysts for hydrogen/oxygen evolution reactions (HER/OER) are urgently needed given the bright future of water splitting hydrogen production technology. Here, the self-supporting N and Ce dual-doped NiCoP nanoarrays (denoted N,Ce-NiCoP/NF) grown on Ni foam are successfully constructed. When the N,Ce-NiCoP/NF simultaneously acts as the HER and OER electrodes, the voltages of 1.54 and 2.14 V are obtained for driving 10 and 500 mA·cm
−2
with a robust durability, and demonstrate its significant potential for practical water electrolysis. According to both experiments and calculations, the electronic structure of NiCoP may be significantly altered by strategically incorporating N and Ce into the lattice, which in turn optimizes the Gibbs free energy of HER/OER intermediates and speeds up the water splitting kinetics. Moreover, the sprout-shaped morphology significantly increases the exposure of active sites and facilitates charge/mass transfer, thereby augmenting catalyst performance. This study offers a potentially effective approach involving the regulation of anion and cation double doping, as well as architectural engineering, for the purpose of designing and optimizing innovative electrocatalysts.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-023-5769-9</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Carbon ; Casting ; Catalysts ; Charge transfer ; Chemistry and Materials Science ; Condensed Matter Physics ; Doping ; Electrocatalysis ; Electrocatalysts ; Electrolysis ; Electronic structure ; Energy ; Engineering ; Free energy ; Gibbs free energy ; Graphene ; Hydrogen ; Hydrogen production ; Intermediates ; Mass transfer ; Materials Science ; Metal foams ; Nanotechnology ; Nickel ; Oxidation ; Oxygen evolution reactions ; Research Article ; Splitting ; Water splitting</subject><ispartof>Nano research, 2024, Vol.17 (1), p.282-289</ispartof><rights>Tsinghua University Press 2023</rights><rights>Tsinghua University Press 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2319-955fc6f1af913668031e28db3cf07ea7ca80b17fc0c54174b0a5f4402b8b43ed3</citedby><cites>FETCH-LOGICAL-c2319-955fc6f1af913668031e28db3cf07ea7ca80b17fc0c54174b0a5f4402b8b43ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-023-5769-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-023-5769-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zhao, Ting</creatorcontrib><creatorcontrib>Xu, Guancheng</creatorcontrib><creatorcontrib>Gong, Bingbing</creatorcontrib><creatorcontrib>Jiang, Jiahui</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><title>Electronic modulation of sprout-shaped NiCoP nanoarrays by N and Ce doping for efficient overall water splitting</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>Bifunctional catalysts for hydrogen/oxygen evolution reactions (HER/OER) are urgently needed given the bright future of water splitting hydrogen production technology. Here, the self-supporting N and Ce dual-doped NiCoP nanoarrays (denoted N,Ce-NiCoP/NF) grown on Ni foam are successfully constructed. When the N,Ce-NiCoP/NF simultaneously acts as the HER and OER electrodes, the voltages of 1.54 and 2.14 V are obtained for driving 10 and 500 mA·cm
−2
with a robust durability, and demonstrate its significant potential for practical water electrolysis. According to both experiments and calculations, the electronic structure of NiCoP may be significantly altered by strategically incorporating N and Ce into the lattice, which in turn optimizes the Gibbs free energy of HER/OER intermediates and speeds up the water splitting kinetics. Moreover, the sprout-shaped morphology significantly increases the exposure of active sites and facilitates charge/mass transfer, thereby augmenting catalyst performance. This study offers a potentially effective approach involving the regulation of anion and cation double doping, as well as architectural engineering, for the purpose of designing and optimizing innovative electrocatalysts.</description><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Carbon</subject><subject>Casting</subject><subject>Catalysts</subject><subject>Charge transfer</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Doping</subject><subject>Electrocatalysis</subject><subject>Electrocatalysts</subject><subject>Electrolysis</subject><subject>Electronic structure</subject><subject>Energy</subject><subject>Engineering</subject><subject>Free energy</subject><subject>Gibbs free energy</subject><subject>Graphene</subject><subject>Hydrogen</subject><subject>Hydrogen production</subject><subject>Intermediates</subject><subject>Mass transfer</subject><subject>Materials Science</subject><subject>Metal foams</subject><subject>Nanotechnology</subject><subject>Nickel</subject><subject>Oxidation</subject><subject>Oxygen evolution reactions</subject><subject>Research Article</subject><subject>Splitting</subject><subject>Water splitting</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqXwAewssQ54HOe1RFF5SFVhAWvLcWxwldrBdkD9e1wFxIrZzCzuvTNzELoEcg2EVDcBKK1YRmieFVXZZM0RWkDT1BlJdfw7A2Wn6CyELSElBVYv0LgalIzeWSPxzvXTIKJxFjuNw-jdFLPwLkbV441p3TO2wjrhvdgH3O3xBgvb41bh3o3GvmHtPFZaG2mUjdh9Ki-GAX-JqHxKG0yMSXWOTrQYgrr46Uv0erd6aR-y9dP9Y3u7ziTNId1fFFqWGoRuIC_LmuSgaN13udSkUqKSoiYdVFoSWTCoWEdEoRkjtKs7lqs-X6KrOTe98TGpEPnWTd6mlZw2yZCAACQVzCrpXQheaT56sxN-z4HwA1g-g-UJLD-A5U3y0NmTCKWHlP9L_t_0DUP9fC4</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Zhao, Ting</creator><creator>Xu, Guancheng</creator><creator>Gong, Bingbing</creator><creator>Jiang, Jiahui</creator><creator>Zhang, Li</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>H8G</scope><scope>JG9</scope><scope>K9.</scope><scope>L7M</scope><scope>P64</scope></search><sort><creationdate>2024</creationdate><title>Electronic modulation of sprout-shaped NiCoP nanoarrays by N and Ce doping for efficient overall water splitting</title><author>Zhao, Ting ; Xu, Guancheng ; Gong, Bingbing ; Jiang, Jiahui ; Zhang, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2319-955fc6f1af913668031e28db3cf07ea7ca80b17fc0c54174b0a5f4402b8b43ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Carbon</topic><topic>Casting</topic><topic>Catalysts</topic><topic>Charge transfer</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Doping</topic><topic>Electrocatalysis</topic><topic>Electrocatalysts</topic><topic>Electrolysis</topic><topic>Electronic structure</topic><topic>Energy</topic><topic>Engineering</topic><topic>Free energy</topic><topic>Gibbs free energy</topic><topic>Graphene</topic><topic>Hydrogen</topic><topic>Hydrogen production</topic><topic>Intermediates</topic><topic>Mass transfer</topic><topic>Materials Science</topic><topic>Metal foams</topic><topic>Nanotechnology</topic><topic>Nickel</topic><topic>Oxidation</topic><topic>Oxygen evolution reactions</topic><topic>Research Article</topic><topic>Splitting</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Ting</creatorcontrib><creatorcontrib>Xu, Guancheng</creatorcontrib><creatorcontrib>Gong, Bingbing</creatorcontrib><creatorcontrib>Jiang, Jiahui</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Ting</au><au>Xu, Guancheng</au><au>Gong, Bingbing</au><au>Jiang, Jiahui</au><au>Zhang, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic modulation of sprout-shaped NiCoP nanoarrays by N and Ce doping for efficient overall water splitting</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2024</date><risdate>2024</risdate><volume>17</volume><issue>1</issue><spage>282</spage><epage>289</epage><pages>282-289</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Bifunctional catalysts for hydrogen/oxygen evolution reactions (HER/OER) are urgently needed given the bright future of water splitting hydrogen production technology. Here, the self-supporting N and Ce dual-doped NiCoP nanoarrays (denoted N,Ce-NiCoP/NF) grown on Ni foam are successfully constructed. When the N,Ce-NiCoP/NF simultaneously acts as the HER and OER electrodes, the voltages of 1.54 and 2.14 V are obtained for driving 10 and 500 mA·cm
−2
with a robust durability, and demonstrate its significant potential for practical water electrolysis. According to both experiments and calculations, the electronic structure of NiCoP may be significantly altered by strategically incorporating N and Ce into the lattice, which in turn optimizes the Gibbs free energy of HER/OER intermediates and speeds up the water splitting kinetics. Moreover, the sprout-shaped morphology significantly increases the exposure of active sites and facilitates charge/mass transfer, thereby augmenting catalyst performance. This study offers a potentially effective approach involving the regulation of anion and cation double doping, as well as architectural engineering, for the purpose of designing and optimizing innovative electrocatalysts.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-023-5769-9</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1998-0124 |
ispartof | Nano research, 2024, Vol.17 (1), p.282-289 |
issn | 1998-0124 1998-0000 |
language | eng |
recordid | cdi_proquest_journals_2917419911 |
source | SpringerLink Journals - AutoHoldings |
subjects | Atomic/Molecular Structure and Spectra Biomedicine Biotechnology Carbon Casting Catalysts Charge transfer Chemistry and Materials Science Condensed Matter Physics Doping Electrocatalysis Electrocatalysts Electrolysis Electronic structure Energy Engineering Free energy Gibbs free energy Graphene Hydrogen Hydrogen production Intermediates Mass transfer Materials Science Metal foams Nanotechnology Nickel Oxidation Oxygen evolution reactions Research Article Splitting Water splitting |
title | Electronic modulation of sprout-shaped NiCoP nanoarrays by N and Ce doping for efficient overall water splitting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A35%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20modulation%20of%20sprout-shaped%20NiCoP%20nanoarrays%20by%20N%20and%20Ce%20doping%20for%20efficient%20overall%20water%20splitting&rft.jtitle=Nano%20research&rft.au=Zhao,%20Ting&rft.date=2024&rft.volume=17&rft.issue=1&rft.spage=282&rft.epage=289&rft.pages=282-289&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-023-5769-9&rft_dat=%3Cproquest_cross%3E2917419911%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917419911&rft_id=info:pmid/&rfr_iscdi=true |