Electronic modulation of sprout-shaped NiCoP nanoarrays by N and Ce doping for efficient overall water splitting

Bifunctional catalysts for hydrogen/oxygen evolution reactions (HER/OER) are urgently needed given the bright future of water splitting hydrogen production technology. Here, the self-supporting N and Ce dual-doped NiCoP nanoarrays (denoted N,Ce-NiCoP/NF) grown on Ni foam are successfully constructed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano research 2024, Vol.17 (1), p.282-289
Hauptverfasser: Zhao, Ting, Xu, Guancheng, Gong, Bingbing, Jiang, Jiahui, Zhang, Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 289
container_issue 1
container_start_page 282
container_title Nano research
container_volume 17
creator Zhao, Ting
Xu, Guancheng
Gong, Bingbing
Jiang, Jiahui
Zhang, Li
description Bifunctional catalysts for hydrogen/oxygen evolution reactions (HER/OER) are urgently needed given the bright future of water splitting hydrogen production technology. Here, the self-supporting N and Ce dual-doped NiCoP nanoarrays (denoted N,Ce-NiCoP/NF) grown on Ni foam are successfully constructed. When the N,Ce-NiCoP/NF simultaneously acts as the HER and OER electrodes, the voltages of 1.54 and 2.14 V are obtained for driving 10 and 500 mA·cm −2 with a robust durability, and demonstrate its significant potential for practical water electrolysis. According to both experiments and calculations, the electronic structure of NiCoP may be significantly altered by strategically incorporating N and Ce into the lattice, which in turn optimizes the Gibbs free energy of HER/OER intermediates and speeds up the water splitting kinetics. Moreover, the sprout-shaped morphology significantly increases the exposure of active sites and facilitates charge/mass transfer, thereby augmenting catalyst performance. This study offers a potentially effective approach involving the regulation of anion and cation double doping, as well as architectural engineering, for the purpose of designing and optimizing innovative electrocatalysts.
doi_str_mv 10.1007/s12274-023-5769-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917419911</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917419911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2319-955fc6f1af913668031e28db3cf07ea7ca80b17fc0c54174b0a5f4402b8b43ed3</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqXwAewssQ54HOe1RFF5SFVhAWvLcWxwldrBdkD9e1wFxIrZzCzuvTNzELoEcg2EVDcBKK1YRmieFVXZZM0RWkDT1BlJdfw7A2Wn6CyELSElBVYv0LgalIzeWSPxzvXTIKJxFjuNw-jdFLPwLkbV441p3TO2wjrhvdgH3O3xBgvb41bh3o3GvmHtPFZaG2mUjdh9Ki-GAX-JqHxKG0yMSXWOTrQYgrr46Uv0erd6aR-y9dP9Y3u7ziTNId1fFFqWGoRuIC_LmuSgaN13udSkUqKSoiYdVFoSWTCoWEdEoRkjtKs7lqs-X6KrOTe98TGpEPnWTd6mlZw2yZCAACQVzCrpXQheaT56sxN-z4HwA1g-g-UJLD-A5U3y0NmTCKWHlP9L_t_0DUP9fC4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917419911</pqid></control><display><type>article</type><title>Electronic modulation of sprout-shaped NiCoP nanoarrays by N and Ce doping for efficient overall water splitting</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zhao, Ting ; Xu, Guancheng ; Gong, Bingbing ; Jiang, Jiahui ; Zhang, Li</creator><creatorcontrib>Zhao, Ting ; Xu, Guancheng ; Gong, Bingbing ; Jiang, Jiahui ; Zhang, Li</creatorcontrib><description>Bifunctional catalysts for hydrogen/oxygen evolution reactions (HER/OER) are urgently needed given the bright future of water splitting hydrogen production technology. Here, the self-supporting N and Ce dual-doped NiCoP nanoarrays (denoted N,Ce-NiCoP/NF) grown on Ni foam are successfully constructed. When the N,Ce-NiCoP/NF simultaneously acts as the HER and OER electrodes, the voltages of 1.54 and 2.14 V are obtained for driving 10 and 500 mA·cm −2 with a robust durability, and demonstrate its significant potential for practical water electrolysis. According to both experiments and calculations, the electronic structure of NiCoP may be significantly altered by strategically incorporating N and Ce into the lattice, which in turn optimizes the Gibbs free energy of HER/OER intermediates and speeds up the water splitting kinetics. Moreover, the sprout-shaped morphology significantly increases the exposure of active sites and facilitates charge/mass transfer, thereby augmenting catalyst performance. This study offers a potentially effective approach involving the regulation of anion and cation double doping, as well as architectural engineering, for the purpose of designing and optimizing innovative electrocatalysts.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-023-5769-9</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Carbon ; Casting ; Catalysts ; Charge transfer ; Chemistry and Materials Science ; Condensed Matter Physics ; Doping ; Electrocatalysis ; Electrocatalysts ; Electrolysis ; Electronic structure ; Energy ; Engineering ; Free energy ; Gibbs free energy ; Graphene ; Hydrogen ; Hydrogen production ; Intermediates ; Mass transfer ; Materials Science ; Metal foams ; Nanotechnology ; Nickel ; Oxidation ; Oxygen evolution reactions ; Research Article ; Splitting ; Water splitting</subject><ispartof>Nano research, 2024, Vol.17 (1), p.282-289</ispartof><rights>Tsinghua University Press 2023</rights><rights>Tsinghua University Press 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2319-955fc6f1af913668031e28db3cf07ea7ca80b17fc0c54174b0a5f4402b8b43ed3</citedby><cites>FETCH-LOGICAL-c2319-955fc6f1af913668031e28db3cf07ea7ca80b17fc0c54174b0a5f4402b8b43ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-023-5769-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-023-5769-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zhao, Ting</creatorcontrib><creatorcontrib>Xu, Guancheng</creatorcontrib><creatorcontrib>Gong, Bingbing</creatorcontrib><creatorcontrib>Jiang, Jiahui</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><title>Electronic modulation of sprout-shaped NiCoP nanoarrays by N and Ce doping for efficient overall water splitting</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>Bifunctional catalysts for hydrogen/oxygen evolution reactions (HER/OER) are urgently needed given the bright future of water splitting hydrogen production technology. Here, the self-supporting N and Ce dual-doped NiCoP nanoarrays (denoted N,Ce-NiCoP/NF) grown on Ni foam are successfully constructed. When the N,Ce-NiCoP/NF simultaneously acts as the HER and OER electrodes, the voltages of 1.54 and 2.14 V are obtained for driving 10 and 500 mA·cm −2 with a robust durability, and demonstrate its significant potential for practical water electrolysis. According to both experiments and calculations, the electronic structure of NiCoP may be significantly altered by strategically incorporating N and Ce into the lattice, which in turn optimizes the Gibbs free energy of HER/OER intermediates and speeds up the water splitting kinetics. Moreover, the sprout-shaped morphology significantly increases the exposure of active sites and facilitates charge/mass transfer, thereby augmenting catalyst performance. This study offers a potentially effective approach involving the regulation of anion and cation double doping, as well as architectural engineering, for the purpose of designing and optimizing innovative electrocatalysts.</description><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Carbon</subject><subject>Casting</subject><subject>Catalysts</subject><subject>Charge transfer</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Doping</subject><subject>Electrocatalysis</subject><subject>Electrocatalysts</subject><subject>Electrolysis</subject><subject>Electronic structure</subject><subject>Energy</subject><subject>Engineering</subject><subject>Free energy</subject><subject>Gibbs free energy</subject><subject>Graphene</subject><subject>Hydrogen</subject><subject>Hydrogen production</subject><subject>Intermediates</subject><subject>Mass transfer</subject><subject>Materials Science</subject><subject>Metal foams</subject><subject>Nanotechnology</subject><subject>Nickel</subject><subject>Oxidation</subject><subject>Oxygen evolution reactions</subject><subject>Research Article</subject><subject>Splitting</subject><subject>Water splitting</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqXwAewssQ54HOe1RFF5SFVhAWvLcWxwldrBdkD9e1wFxIrZzCzuvTNzELoEcg2EVDcBKK1YRmieFVXZZM0RWkDT1BlJdfw7A2Wn6CyELSElBVYv0LgalIzeWSPxzvXTIKJxFjuNw-jdFLPwLkbV441p3TO2wjrhvdgH3O3xBgvb41bh3o3GvmHtPFZaG2mUjdh9Ki-GAX-JqHxKG0yMSXWOTrQYgrr46Uv0erd6aR-y9dP9Y3u7ziTNId1fFFqWGoRuIC_LmuSgaN13udSkUqKSoiYdVFoSWTCoWEdEoRkjtKs7lqs-X6KrOTe98TGpEPnWTd6mlZw2yZCAACQVzCrpXQheaT56sxN-z4HwA1g-g-UJLD-A5U3y0NmTCKWHlP9L_t_0DUP9fC4</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Zhao, Ting</creator><creator>Xu, Guancheng</creator><creator>Gong, Bingbing</creator><creator>Jiang, Jiahui</creator><creator>Zhang, Li</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>H8G</scope><scope>JG9</scope><scope>K9.</scope><scope>L7M</scope><scope>P64</scope></search><sort><creationdate>2024</creationdate><title>Electronic modulation of sprout-shaped NiCoP nanoarrays by N and Ce doping for efficient overall water splitting</title><author>Zhao, Ting ; Xu, Guancheng ; Gong, Bingbing ; Jiang, Jiahui ; Zhang, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2319-955fc6f1af913668031e28db3cf07ea7ca80b17fc0c54174b0a5f4402b8b43ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Carbon</topic><topic>Casting</topic><topic>Catalysts</topic><topic>Charge transfer</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Doping</topic><topic>Electrocatalysis</topic><topic>Electrocatalysts</topic><topic>Electrolysis</topic><topic>Electronic structure</topic><topic>Energy</topic><topic>Engineering</topic><topic>Free energy</topic><topic>Gibbs free energy</topic><topic>Graphene</topic><topic>Hydrogen</topic><topic>Hydrogen production</topic><topic>Intermediates</topic><topic>Mass transfer</topic><topic>Materials Science</topic><topic>Metal foams</topic><topic>Nanotechnology</topic><topic>Nickel</topic><topic>Oxidation</topic><topic>Oxygen evolution reactions</topic><topic>Research Article</topic><topic>Splitting</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Ting</creatorcontrib><creatorcontrib>Xu, Guancheng</creatorcontrib><creatorcontrib>Gong, Bingbing</creatorcontrib><creatorcontrib>Jiang, Jiahui</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Ting</au><au>Xu, Guancheng</au><au>Gong, Bingbing</au><au>Jiang, Jiahui</au><au>Zhang, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic modulation of sprout-shaped NiCoP nanoarrays by N and Ce doping for efficient overall water splitting</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2024</date><risdate>2024</risdate><volume>17</volume><issue>1</issue><spage>282</spage><epage>289</epage><pages>282-289</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Bifunctional catalysts for hydrogen/oxygen evolution reactions (HER/OER) are urgently needed given the bright future of water splitting hydrogen production technology. Here, the self-supporting N and Ce dual-doped NiCoP nanoarrays (denoted N,Ce-NiCoP/NF) grown on Ni foam are successfully constructed. When the N,Ce-NiCoP/NF simultaneously acts as the HER and OER electrodes, the voltages of 1.54 and 2.14 V are obtained for driving 10 and 500 mA·cm −2 with a robust durability, and demonstrate its significant potential for practical water electrolysis. According to both experiments and calculations, the electronic structure of NiCoP may be significantly altered by strategically incorporating N and Ce into the lattice, which in turn optimizes the Gibbs free energy of HER/OER intermediates and speeds up the water splitting kinetics. Moreover, the sprout-shaped morphology significantly increases the exposure of active sites and facilitates charge/mass transfer, thereby augmenting catalyst performance. This study offers a potentially effective approach involving the regulation of anion and cation double doping, as well as architectural engineering, for the purpose of designing and optimizing innovative electrocatalysts.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-023-5769-9</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1998-0124
ispartof Nano research, 2024, Vol.17 (1), p.282-289
issn 1998-0124
1998-0000
language eng
recordid cdi_proquest_journals_2917419911
source SpringerLink Journals - AutoHoldings
subjects Atomic/Molecular Structure and Spectra
Biomedicine
Biotechnology
Carbon
Casting
Catalysts
Charge transfer
Chemistry and Materials Science
Condensed Matter Physics
Doping
Electrocatalysis
Electrocatalysts
Electrolysis
Electronic structure
Energy
Engineering
Free energy
Gibbs free energy
Graphene
Hydrogen
Hydrogen production
Intermediates
Mass transfer
Materials Science
Metal foams
Nanotechnology
Nickel
Oxidation
Oxygen evolution reactions
Research Article
Splitting
Water splitting
title Electronic modulation of sprout-shaped NiCoP nanoarrays by N and Ce doping for efficient overall water splitting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A35%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20modulation%20of%20sprout-shaped%20NiCoP%20nanoarrays%20by%20N%20and%20Ce%20doping%20for%20efficient%20overall%20water%20splitting&rft.jtitle=Nano%20research&rft.au=Zhao,%20Ting&rft.date=2024&rft.volume=17&rft.issue=1&rft.spage=282&rft.epage=289&rft.pages=282-289&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-023-5769-9&rft_dat=%3Cproquest_cross%3E2917419911%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917419911&rft_id=info:pmid/&rfr_iscdi=true