A Survey of PCB Defect Detection Algorithms
Printed circuit boards (PCBs) are the first stage in manufacturing any electronic product. The reliability of the electronic product depends on the PCB. The presence of manufacturing defects in PCBs might affect the performance of the PCB and thereby the reliability of the electronic products. In th...
Gespeichert in:
Veröffentlicht in: | Journal of electronic testing 2023-12, Vol.39 (5-6), p.541-554 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 554 |
---|---|
container_issue | 5-6 |
container_start_page | 541 |
container_title | Journal of electronic testing |
container_volume | 39 |
creator | Lakshmi, Gayathri Sankar, V. Udaya Sankar, Y. Siva |
description | Printed circuit boards (PCBs) are the first stage in manufacturing any electronic product. The reliability of the electronic product depends on the PCB. The presence of manufacturing defects in PCBs might affect the performance of the PCB and thereby the reliability of the electronic products. In this paper, the various challenges faced in identifying manufacturing defects along with a review of various learning methods employed for defect detection are presented. We compare the various techniques available in the literature for further understanding of the accuracy of these techniques in defect detection. |
doi_str_mv | 10.1007/s10836-023-06091-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917416802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917416802</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f606c19efe6db1588fecf1d7b0e9fa2bbeccc60f2f78ff8614b5cbe9443249ba3</originalsourceid><addsrcrecordid>eNp9kM1Lw0AQxRdRsFb_AU8BjxKd2ST7cYyxfkBBQT0v2e1ubWmbupsK_e8djeDN02OY93vDPMbOEa4QQF4nBFWIHHiRgwCNuThgI6wkjZLLQzYCTSuFsjxmJyktgSBeiRG7rLOXXfz0-6wL2XNzk9364F1P0pMsuk1Wr-ZdXPTv63TKjkK7Sv7sV8fs7W7y2jzk06f7x6ae5q5A3edBgHCoKUfMLFZKUWDAmbTgdWi5td45JyDwIFUISmBpK2e9LsuCl9q2xZhdDLnb2H3sfOrNstvFDZ00XNMLKBQ9OmZ8cLnYpRR9MNu4WLdxbxDMdylmKMWQ1_yUYgRBxQAlMm_mPv5F_0N9AW3RY5k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917416802</pqid></control><display><type>article</type><title>A Survey of PCB Defect Detection Algorithms</title><source>Springer Nature - Complete Springer Journals</source><creator>Lakshmi, Gayathri ; Sankar, V. Udaya ; Sankar, Y. Siva</creator><creatorcontrib>Lakshmi, Gayathri ; Sankar, V. Udaya ; Sankar, Y. Siva</creatorcontrib><description>Printed circuit boards (PCBs) are the first stage in manufacturing any electronic product. The reliability of the electronic product depends on the PCB. The presence of manufacturing defects in PCBs might affect the performance of the PCB and thereby the reliability of the electronic products. In this paper, the various challenges faced in identifying manufacturing defects along with a review of various learning methods employed for defect detection are presented. We compare the various techniques available in the literature for further understanding of the accuracy of these techniques in defect detection.</description><identifier>ISSN: 0923-8174</identifier><identifier>EISSN: 1573-0727</identifier><identifier>DOI: 10.1007/s10836-023-06091-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Algorithms ; Artificial intelligence ; CAE) and Design ; Circuit boards ; Circuits and Systems ; Classification ; Computer-Aided Engineering (CAD ; Defects ; Electrical Engineering ; Engineering ; Machine learning ; Manufacturing ; Manufacturing defects ; Printed circuits ; Reliability</subject><ispartof>Journal of electronic testing, 2023-12, Vol.39 (5-6), p.541-554</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f606c19efe6db1588fecf1d7b0e9fa2bbeccc60f2f78ff8614b5cbe9443249ba3</citedby><cites>FETCH-LOGICAL-c319t-f606c19efe6db1588fecf1d7b0e9fa2bbeccc60f2f78ff8614b5cbe9443249ba3</cites><orcidid>0000-0002-5810-9178</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10836-023-06091-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10836-023-06091-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Lakshmi, Gayathri</creatorcontrib><creatorcontrib>Sankar, V. Udaya</creatorcontrib><creatorcontrib>Sankar, Y. Siva</creatorcontrib><title>A Survey of PCB Defect Detection Algorithms</title><title>Journal of electronic testing</title><addtitle>J Electron Test</addtitle><description>Printed circuit boards (PCBs) are the first stage in manufacturing any electronic product. The reliability of the electronic product depends on the PCB. The presence of manufacturing defects in PCBs might affect the performance of the PCB and thereby the reliability of the electronic products. In this paper, the various challenges faced in identifying manufacturing defects along with a review of various learning methods employed for defect detection are presented. We compare the various techniques available in the literature for further understanding of the accuracy of these techniques in defect detection.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>CAE) and Design</subject><subject>Circuit boards</subject><subject>Circuits and Systems</subject><subject>Classification</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Defects</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Machine learning</subject><subject>Manufacturing</subject><subject>Manufacturing defects</subject><subject>Printed circuits</subject><subject>Reliability</subject><issn>0923-8174</issn><issn>1573-0727</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kM1Lw0AQxRdRsFb_AU8BjxKd2ST7cYyxfkBBQT0v2e1ubWmbupsK_e8djeDN02OY93vDPMbOEa4QQF4nBFWIHHiRgwCNuThgI6wkjZLLQzYCTSuFsjxmJyktgSBeiRG7rLOXXfz0-6wL2XNzk9364F1P0pMsuk1Wr-ZdXPTv63TKjkK7Sv7sV8fs7W7y2jzk06f7x6ae5q5A3edBgHCoKUfMLFZKUWDAmbTgdWi5td45JyDwIFUISmBpK2e9LsuCl9q2xZhdDLnb2H3sfOrNstvFDZ00XNMLKBQ9OmZ8cLnYpRR9MNu4WLdxbxDMdylmKMWQ1_yUYgRBxQAlMm_mPv5F_0N9AW3RY5k</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Lakshmi, Gayathri</creator><creator>Sankar, V. Udaya</creator><creator>Sankar, Y. Siva</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>88K</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2P</scope><scope>M2T</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-5810-9178</orcidid></search><sort><creationdate>20231201</creationdate><title>A Survey of PCB Defect Detection Algorithms</title><author>Lakshmi, Gayathri ; Sankar, V. Udaya ; Sankar, Y. Siva</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f606c19efe6db1588fecf1d7b0e9fa2bbeccc60f2f78ff8614b5cbe9443249ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>CAE) and Design</topic><topic>Circuit boards</topic><topic>Circuits and Systems</topic><topic>Classification</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Defects</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Machine learning</topic><topic>Manufacturing</topic><topic>Manufacturing defects</topic><topic>Printed circuits</topic><topic>Reliability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lakshmi, Gayathri</creatorcontrib><creatorcontrib>Sankar, V. Udaya</creatorcontrib><creatorcontrib>Sankar, Y. Siva</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of electronic testing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lakshmi, Gayathri</au><au>Sankar, V. Udaya</au><au>Sankar, Y. Siva</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Survey of PCB Defect Detection Algorithms</atitle><jtitle>Journal of electronic testing</jtitle><stitle>J Electron Test</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>39</volume><issue>5-6</issue><spage>541</spage><epage>554</epage><pages>541-554</pages><issn>0923-8174</issn><eissn>1573-0727</eissn><abstract>Printed circuit boards (PCBs) are the first stage in manufacturing any electronic product. The reliability of the electronic product depends on the PCB. The presence of manufacturing defects in PCBs might affect the performance of the PCB and thereby the reliability of the electronic products. In this paper, the various challenges faced in identifying manufacturing defects along with a review of various learning methods employed for defect detection are presented. We compare the various techniques available in the literature for further understanding of the accuracy of these techniques in defect detection.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10836-023-06091-6</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5810-9178</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0923-8174 |
ispartof | Journal of electronic testing, 2023-12, Vol.39 (5-6), p.541-554 |
issn | 0923-8174 1573-0727 |
language | eng |
recordid | cdi_proquest_journals_2917416802 |
source | Springer Nature - Complete Springer Journals |
subjects | Accuracy Algorithms Artificial intelligence CAE) and Design Circuit boards Circuits and Systems Classification Computer-Aided Engineering (CAD Defects Electrical Engineering Engineering Machine learning Manufacturing Manufacturing defects Printed circuits Reliability |
title | A Survey of PCB Defect Detection Algorithms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T17%3A16%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Survey%20of%20PCB%20Defect%20Detection%20Algorithms&rft.jtitle=Journal%20of%20electronic%20testing&rft.au=Lakshmi,%20Gayathri&rft.date=2023-12-01&rft.volume=39&rft.issue=5-6&rft.spage=541&rft.epage=554&rft.pages=541-554&rft.issn=0923-8174&rft.eissn=1573-0727&rft_id=info:doi/10.1007/s10836-023-06091-6&rft_dat=%3Cproquest_cross%3E2917416802%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917416802&rft_id=info:pmid/&rfr_iscdi=true |