A Survey of PCB Defect Detection Algorithms

Printed circuit boards (PCBs) are the first stage in manufacturing any electronic product. The reliability of the electronic product depends on the PCB. The presence of manufacturing defects in PCBs might affect the performance of the PCB and thereby the reliability of the electronic products. In th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic testing 2023-12, Vol.39 (5-6), p.541-554
Hauptverfasser: Lakshmi, Gayathri, Sankar, V. Udaya, Sankar, Y. Siva
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 554
container_issue 5-6
container_start_page 541
container_title Journal of electronic testing
container_volume 39
creator Lakshmi, Gayathri
Sankar, V. Udaya
Sankar, Y. Siva
description Printed circuit boards (PCBs) are the first stage in manufacturing any electronic product. The reliability of the electronic product depends on the PCB. The presence of manufacturing defects in PCBs might affect the performance of the PCB and thereby the reliability of the electronic products. In this paper, the various challenges faced in identifying manufacturing defects along with a review of various learning methods employed for defect detection are presented. We compare the various techniques available in the literature for further understanding of the accuracy of these techniques in defect detection.
doi_str_mv 10.1007/s10836-023-06091-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917416802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917416802</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f606c19efe6db1588fecf1d7b0e9fa2bbeccc60f2f78ff8614b5cbe9443249ba3</originalsourceid><addsrcrecordid>eNp9kM1Lw0AQxRdRsFb_AU8BjxKd2ST7cYyxfkBBQT0v2e1ubWmbupsK_e8djeDN02OY93vDPMbOEa4QQF4nBFWIHHiRgwCNuThgI6wkjZLLQzYCTSuFsjxmJyktgSBeiRG7rLOXXfz0-6wL2XNzk9364F1P0pMsuk1Wr-ZdXPTv63TKjkK7Sv7sV8fs7W7y2jzk06f7x6ae5q5A3edBgHCoKUfMLFZKUWDAmbTgdWi5td45JyDwIFUISmBpK2e9LsuCl9q2xZhdDLnb2H3sfOrNstvFDZ00XNMLKBQ9OmZ8cLnYpRR9MNu4WLdxbxDMdylmKMWQ1_yUYgRBxQAlMm_mPv5F_0N9AW3RY5k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917416802</pqid></control><display><type>article</type><title>A Survey of PCB Defect Detection Algorithms</title><source>Springer Nature - Complete Springer Journals</source><creator>Lakshmi, Gayathri ; Sankar, V. Udaya ; Sankar, Y. Siva</creator><creatorcontrib>Lakshmi, Gayathri ; Sankar, V. Udaya ; Sankar, Y. Siva</creatorcontrib><description>Printed circuit boards (PCBs) are the first stage in manufacturing any electronic product. The reliability of the electronic product depends on the PCB. The presence of manufacturing defects in PCBs might affect the performance of the PCB and thereby the reliability of the electronic products. In this paper, the various challenges faced in identifying manufacturing defects along with a review of various learning methods employed for defect detection are presented. We compare the various techniques available in the literature for further understanding of the accuracy of these techniques in defect detection.</description><identifier>ISSN: 0923-8174</identifier><identifier>EISSN: 1573-0727</identifier><identifier>DOI: 10.1007/s10836-023-06091-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Algorithms ; Artificial intelligence ; CAE) and Design ; Circuit boards ; Circuits and Systems ; Classification ; Computer-Aided Engineering (CAD ; Defects ; Electrical Engineering ; Engineering ; Machine learning ; Manufacturing ; Manufacturing defects ; Printed circuits ; Reliability</subject><ispartof>Journal of electronic testing, 2023-12, Vol.39 (5-6), p.541-554</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f606c19efe6db1588fecf1d7b0e9fa2bbeccc60f2f78ff8614b5cbe9443249ba3</citedby><cites>FETCH-LOGICAL-c319t-f606c19efe6db1588fecf1d7b0e9fa2bbeccc60f2f78ff8614b5cbe9443249ba3</cites><orcidid>0000-0002-5810-9178</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10836-023-06091-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10836-023-06091-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Lakshmi, Gayathri</creatorcontrib><creatorcontrib>Sankar, V. Udaya</creatorcontrib><creatorcontrib>Sankar, Y. Siva</creatorcontrib><title>A Survey of PCB Defect Detection Algorithms</title><title>Journal of electronic testing</title><addtitle>J Electron Test</addtitle><description>Printed circuit boards (PCBs) are the first stage in manufacturing any electronic product. The reliability of the electronic product depends on the PCB. The presence of manufacturing defects in PCBs might affect the performance of the PCB and thereby the reliability of the electronic products. In this paper, the various challenges faced in identifying manufacturing defects along with a review of various learning methods employed for defect detection are presented. We compare the various techniques available in the literature for further understanding of the accuracy of these techniques in defect detection.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>CAE) and Design</subject><subject>Circuit boards</subject><subject>Circuits and Systems</subject><subject>Classification</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Defects</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Machine learning</subject><subject>Manufacturing</subject><subject>Manufacturing defects</subject><subject>Printed circuits</subject><subject>Reliability</subject><issn>0923-8174</issn><issn>1573-0727</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kM1Lw0AQxRdRsFb_AU8BjxKd2ST7cYyxfkBBQT0v2e1ubWmbupsK_e8djeDN02OY93vDPMbOEa4QQF4nBFWIHHiRgwCNuThgI6wkjZLLQzYCTSuFsjxmJyktgSBeiRG7rLOXXfz0-6wL2XNzk9364F1P0pMsuk1Wr-ZdXPTv63TKjkK7Sv7sV8fs7W7y2jzk06f7x6ae5q5A3edBgHCoKUfMLFZKUWDAmbTgdWi5td45JyDwIFUISmBpK2e9LsuCl9q2xZhdDLnb2H3sfOrNstvFDZ00XNMLKBQ9OmZ8cLnYpRR9MNu4WLdxbxDMdylmKMWQ1_yUYgRBxQAlMm_mPv5F_0N9AW3RY5k</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Lakshmi, Gayathri</creator><creator>Sankar, V. Udaya</creator><creator>Sankar, Y. Siva</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>88K</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2P</scope><scope>M2T</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-5810-9178</orcidid></search><sort><creationdate>20231201</creationdate><title>A Survey of PCB Defect Detection Algorithms</title><author>Lakshmi, Gayathri ; Sankar, V. Udaya ; Sankar, Y. Siva</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f606c19efe6db1588fecf1d7b0e9fa2bbeccc60f2f78ff8614b5cbe9443249ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>CAE) and Design</topic><topic>Circuit boards</topic><topic>Circuits and Systems</topic><topic>Classification</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Defects</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Machine learning</topic><topic>Manufacturing</topic><topic>Manufacturing defects</topic><topic>Printed circuits</topic><topic>Reliability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lakshmi, Gayathri</creatorcontrib><creatorcontrib>Sankar, V. Udaya</creatorcontrib><creatorcontrib>Sankar, Y. Siva</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of electronic testing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lakshmi, Gayathri</au><au>Sankar, V. Udaya</au><au>Sankar, Y. Siva</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Survey of PCB Defect Detection Algorithms</atitle><jtitle>Journal of electronic testing</jtitle><stitle>J Electron Test</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>39</volume><issue>5-6</issue><spage>541</spage><epage>554</epage><pages>541-554</pages><issn>0923-8174</issn><eissn>1573-0727</eissn><abstract>Printed circuit boards (PCBs) are the first stage in manufacturing any electronic product. The reliability of the electronic product depends on the PCB. The presence of manufacturing defects in PCBs might affect the performance of the PCB and thereby the reliability of the electronic products. In this paper, the various challenges faced in identifying manufacturing defects along with a review of various learning methods employed for defect detection are presented. We compare the various techniques available in the literature for further understanding of the accuracy of these techniques in defect detection.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10836-023-06091-6</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5810-9178</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0923-8174
ispartof Journal of electronic testing, 2023-12, Vol.39 (5-6), p.541-554
issn 0923-8174
1573-0727
language eng
recordid cdi_proquest_journals_2917416802
source Springer Nature - Complete Springer Journals
subjects Accuracy
Algorithms
Artificial intelligence
CAE) and Design
Circuit boards
Circuits and Systems
Classification
Computer-Aided Engineering (CAD
Defects
Electrical Engineering
Engineering
Machine learning
Manufacturing
Manufacturing defects
Printed circuits
Reliability
title A Survey of PCB Defect Detection Algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T17%3A16%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Survey%20of%20PCB%20Defect%20Detection%20Algorithms&rft.jtitle=Journal%20of%20electronic%20testing&rft.au=Lakshmi,%20Gayathri&rft.date=2023-12-01&rft.volume=39&rft.issue=5-6&rft.spage=541&rft.epage=554&rft.pages=541-554&rft.issn=0923-8174&rft.eissn=1573-0727&rft_id=info:doi/10.1007/s10836-023-06091-6&rft_dat=%3Cproquest_cross%3E2917416802%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917416802&rft_id=info:pmid/&rfr_iscdi=true