Weakening fibril–fibril interactions via an on-demand regulation of hemicellulose phase towards the facile disassembly of lignocellulose heterostructure into approaching native-state elementary fibrils

It is of great technical interest but still challenging to develop a cost-effective and eco-friendly method to extract high-aspect-ratio elementary nanofibrils with native-state microstructure from recalcitrant lignocellulosic biomass because established chemical/biological/mechanical approaches ine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Green chemistry : an international journal and green chemistry resource : GC 2024-01, Vol.26 (2), p.879-894
Hauptverfasser: Jiang, Yan, Wang, Xinyi, Meng, Zhiqian, Zhang, Mengyang, Wang, Shuangfei, Liu, Xiuyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 894
container_issue 2
container_start_page 879
container_title Green chemistry : an international journal and green chemistry resource : GC
container_volume 26
creator Jiang, Yan
Wang, Xinyi
Meng, Zhiqian
Zhang, Mengyang
Wang, Shuangfei
Liu, Xiuyu
description It is of great technical interest but still challenging to develop a cost-effective and eco-friendly method to extract high-aspect-ratio elementary nanofibrils with native-state microstructure from recalcitrant lignocellulosic biomass because established chemical/biological/mechanical approaches inevitably give rise to the breakage of cellulose chains during the nanofibrillation of lignocellulose. Nature has designed hierarchical and heterogeneous lignocellulose structures, among which hemicellulose significantly affects interfibrillar interactions due to its unique molecular structure and micro-distribution pattern. Inspired by this fact, we amplify the hemicellulose stimulation effect on nanofibrillation using an on-demand regulated ionic liquid/water cosolvent and dissociate ultrahigh aspect ratio (2213) elementary fibrils (diameter = 4.7 nm) comprising approaching native-state structural carbohydrates from mildly delignified lignocellulose fibers ( i.e. holocellulose) by a low-energy blender. We elucidated the mechanism for the exceptional disassembly behavior of holocellulose fibers: the high-level swelling of the amorphous and negatively charged hemicellulose phase weakens fibril–fibril interactions. The high-aspect-ratio morphology, well-preserved cellulose molecular structure, and hemicellulose-rich surface chemistry of the as-prepared nanofibrils significantly affect their self-assembly behavior and contribute to the extraordinary mechanical and optical performances of the corresponding nanopaper that conventional cellulose nano-papers/composites retain unsurpassed, e.g. , overcome general conflicts between strength (310 MPa) and toughness (53 MJ m −3 ) and between transparency (86%) and haze (77%). This work provides a scale-up, ecologically and economically efficient lignocellulose nanostructure-engineered strategy for manufacturing high-performance structural nanomaterials towards a high-tech and carbon-neutral future.
doi_str_mv 10.1039/D3GC04029A
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917189452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917189452</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-8bce3b25d8b0f3b0633c92a4cc9173f3f94d7e2f8daa9ed7ddfd94a796e15e913</originalsourceid><addsrcrecordid>eNpFkc1O3DAQx6MKpALlwhNY6g0p4I9ssj6ibUuRkHop4hhN7PHG1LEX26Hi1nfgsXiLPkkdLSqXmZHm4_8b_avqjNELRoW8_CKuN7ShXF59qI5Y04pa8o4e_K9b_rE6TumBUsa6tjmqXu8RfqG3fkuMHaJ1f_-87AtifcYIKtvgE3myQMCT4GuNE3hNIm5nB0uTBENGnKxC52YXEpLdCCXm8BuiTiSPSAwo65BomyAlnAb3vGw5u_XhfW3EIhhSjrPKc8QFIBDY7WIANS6Evug9YZ0yZCTocEKfIT6_kadP1aEBl_D0LZ9Ud9--_tx8r29_XN9srm5rxVcy1-tBoRj4Sq8HasRAWyGU5NAoJVknjDCy0R1ys9YAEnWntdGygU62yFYomTipPu_vFrLHGVPuH8IcfZHseTnB1rJZ8TJ1vp9S5acU0fS7aKeC2zPaL2b172aJf6q4j-I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917189452</pqid></control><display><type>article</type><title>Weakening fibril–fibril interactions via an on-demand regulation of hemicellulose phase towards the facile disassembly of lignocellulose heterostructure into approaching native-state elementary fibrils</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Jiang, Yan ; Wang, Xinyi ; Meng, Zhiqian ; Zhang, Mengyang ; Wang, Shuangfei ; Liu, Xiuyu</creator><creatorcontrib>Jiang, Yan ; Wang, Xinyi ; Meng, Zhiqian ; Zhang, Mengyang ; Wang, Shuangfei ; Liu, Xiuyu</creatorcontrib><description>It is of great technical interest but still challenging to develop a cost-effective and eco-friendly method to extract high-aspect-ratio elementary nanofibrils with native-state microstructure from recalcitrant lignocellulosic biomass because established chemical/biological/mechanical approaches inevitably give rise to the breakage of cellulose chains during the nanofibrillation of lignocellulose. Nature has designed hierarchical and heterogeneous lignocellulose structures, among which hemicellulose significantly affects interfibrillar interactions due to its unique molecular structure and micro-distribution pattern. Inspired by this fact, we amplify the hemicellulose stimulation effect on nanofibrillation using an on-demand regulated ionic liquid/water cosolvent and dissociate ultrahigh aspect ratio (2213) elementary fibrils (diameter = 4.7 nm) comprising approaching native-state structural carbohydrates from mildly delignified lignocellulose fibers ( i.e. holocellulose) by a low-energy blender. We elucidated the mechanism for the exceptional disassembly behavior of holocellulose fibers: the high-level swelling of the amorphous and negatively charged hemicellulose phase weakens fibril–fibril interactions. The high-aspect-ratio morphology, well-preserved cellulose molecular structure, and hemicellulose-rich surface chemistry of the as-prepared nanofibrils significantly affect their self-assembly behavior and contribute to the extraordinary mechanical and optical performances of the corresponding nanopaper that conventional cellulose nano-papers/composites retain unsurpassed, e.g. , overcome general conflicts between strength (310 MPa) and toughness (53 MJ m −3 ) and between transparency (86%) and haze (77%). This work provides a scale-up, ecologically and economically efficient lignocellulose nanostructure-engineered strategy for manufacturing high-performance structural nanomaterials towards a high-tech and carbon-neutral future.</description><identifier>ISSN: 1463-9262</identifier><identifier>EISSN: 1463-9270</identifier><identifier>DOI: 10.1039/D3GC04029A</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Carbohydrates ; Cellulose ; Dismantling ; Fibers ; Fibrils ; Hemicellulose ; Heterostructures ; High aspect ratio ; Ionic liquids ; Lignocellulose ; Molecular structure ; Nanomaterials ; Nanotechnology ; Self-assembly ; Surface chemistry</subject><ispartof>Green chemistry : an international journal and green chemistry resource : GC, 2024-01, Vol.26 (2), p.879-894</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c259t-8bce3b25d8b0f3b0633c92a4cc9173f3f94d7e2f8daa9ed7ddfd94a796e15e913</citedby><cites>FETCH-LOGICAL-c259t-8bce3b25d8b0f3b0633c92a4cc9173f3f94d7e2f8daa9ed7ddfd94a796e15e913</cites><orcidid>0000-0002-6684-7381 ; 0009-0002-2106-361X ; 0009-0000-2801-4824</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Jiang, Yan</creatorcontrib><creatorcontrib>Wang, Xinyi</creatorcontrib><creatorcontrib>Meng, Zhiqian</creatorcontrib><creatorcontrib>Zhang, Mengyang</creatorcontrib><creatorcontrib>Wang, Shuangfei</creatorcontrib><creatorcontrib>Liu, Xiuyu</creatorcontrib><title>Weakening fibril–fibril interactions via an on-demand regulation of hemicellulose phase towards the facile disassembly of lignocellulose heterostructure into approaching native-state elementary fibrils</title><title>Green chemistry : an international journal and green chemistry resource : GC</title><description>It is of great technical interest but still challenging to develop a cost-effective and eco-friendly method to extract high-aspect-ratio elementary nanofibrils with native-state microstructure from recalcitrant lignocellulosic biomass because established chemical/biological/mechanical approaches inevitably give rise to the breakage of cellulose chains during the nanofibrillation of lignocellulose. Nature has designed hierarchical and heterogeneous lignocellulose structures, among which hemicellulose significantly affects interfibrillar interactions due to its unique molecular structure and micro-distribution pattern. Inspired by this fact, we amplify the hemicellulose stimulation effect on nanofibrillation using an on-demand regulated ionic liquid/water cosolvent and dissociate ultrahigh aspect ratio (2213) elementary fibrils (diameter = 4.7 nm) comprising approaching native-state structural carbohydrates from mildly delignified lignocellulose fibers ( i.e. holocellulose) by a low-energy blender. We elucidated the mechanism for the exceptional disassembly behavior of holocellulose fibers: the high-level swelling of the amorphous and negatively charged hemicellulose phase weakens fibril–fibril interactions. The high-aspect-ratio morphology, well-preserved cellulose molecular structure, and hemicellulose-rich surface chemistry of the as-prepared nanofibrils significantly affect their self-assembly behavior and contribute to the extraordinary mechanical and optical performances of the corresponding nanopaper that conventional cellulose nano-papers/composites retain unsurpassed, e.g. , overcome general conflicts between strength (310 MPa) and toughness (53 MJ m −3 ) and between transparency (86%) and haze (77%). This work provides a scale-up, ecologically and economically efficient lignocellulose nanostructure-engineered strategy for manufacturing high-performance structural nanomaterials towards a high-tech and carbon-neutral future.</description><subject>Carbohydrates</subject><subject>Cellulose</subject><subject>Dismantling</subject><subject>Fibers</subject><subject>Fibrils</subject><subject>Hemicellulose</subject><subject>Heterostructures</subject><subject>High aspect ratio</subject><subject>Ionic liquids</subject><subject>Lignocellulose</subject><subject>Molecular structure</subject><subject>Nanomaterials</subject><subject>Nanotechnology</subject><subject>Self-assembly</subject><subject>Surface chemistry</subject><issn>1463-9262</issn><issn>1463-9270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkc1O3DAQx6MKpALlwhNY6g0p4I9ssj6ibUuRkHop4hhN7PHG1LEX26Hi1nfgsXiLPkkdLSqXmZHm4_8b_avqjNELRoW8_CKuN7ShXF59qI5Y04pa8o4e_K9b_rE6TumBUsa6tjmqXu8RfqG3fkuMHaJ1f_-87AtifcYIKtvgE3myQMCT4GuNE3hNIm5nB0uTBENGnKxC52YXEpLdCCXm8BuiTiSPSAwo65BomyAlnAb3vGw5u_XhfW3EIhhSjrPKc8QFIBDY7WIANS6Evug9YZ0yZCTocEKfIT6_kadP1aEBl_D0LZ9Ud9--_tx8r29_XN9srm5rxVcy1-tBoRj4Sq8HasRAWyGU5NAoJVknjDCy0R1ys9YAEnWntdGygU62yFYomTipPu_vFrLHGVPuH8IcfZHseTnB1rJZ8TJ1vp9S5acU0fS7aKeC2zPaL2b172aJf6q4j-I</recordid><startdate>20240122</startdate><enddate>20240122</enddate><creator>Jiang, Yan</creator><creator>Wang, Xinyi</creator><creator>Meng, Zhiqian</creator><creator>Zhang, Mengyang</creator><creator>Wang, Shuangfei</creator><creator>Liu, Xiuyu</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U6</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-6684-7381</orcidid><orcidid>https://orcid.org/0009-0002-2106-361X</orcidid><orcidid>https://orcid.org/0009-0000-2801-4824</orcidid></search><sort><creationdate>20240122</creationdate><title>Weakening fibril–fibril interactions via an on-demand regulation of hemicellulose phase towards the facile disassembly of lignocellulose heterostructure into approaching native-state elementary fibrils</title><author>Jiang, Yan ; Wang, Xinyi ; Meng, Zhiqian ; Zhang, Mengyang ; Wang, Shuangfei ; Liu, Xiuyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-8bce3b25d8b0f3b0633c92a4cc9173f3f94d7e2f8daa9ed7ddfd94a796e15e913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carbohydrates</topic><topic>Cellulose</topic><topic>Dismantling</topic><topic>Fibers</topic><topic>Fibrils</topic><topic>Hemicellulose</topic><topic>Heterostructures</topic><topic>High aspect ratio</topic><topic>Ionic liquids</topic><topic>Lignocellulose</topic><topic>Molecular structure</topic><topic>Nanomaterials</topic><topic>Nanotechnology</topic><topic>Self-assembly</topic><topic>Surface chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Yan</creatorcontrib><creatorcontrib>Wang, Xinyi</creatorcontrib><creatorcontrib>Meng, Zhiqian</creatorcontrib><creatorcontrib>Zhang, Mengyang</creatorcontrib><creatorcontrib>Wang, Shuangfei</creatorcontrib><creatorcontrib>Liu, Xiuyu</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Yan</au><au>Wang, Xinyi</au><au>Meng, Zhiqian</au><au>Zhang, Mengyang</au><au>Wang, Shuangfei</au><au>Liu, Xiuyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weakening fibril–fibril interactions via an on-demand regulation of hemicellulose phase towards the facile disassembly of lignocellulose heterostructure into approaching native-state elementary fibrils</atitle><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle><date>2024-01-22</date><risdate>2024</risdate><volume>26</volume><issue>2</issue><spage>879</spage><epage>894</epage><pages>879-894</pages><issn>1463-9262</issn><eissn>1463-9270</eissn><abstract>It is of great technical interest but still challenging to develop a cost-effective and eco-friendly method to extract high-aspect-ratio elementary nanofibrils with native-state microstructure from recalcitrant lignocellulosic biomass because established chemical/biological/mechanical approaches inevitably give rise to the breakage of cellulose chains during the nanofibrillation of lignocellulose. Nature has designed hierarchical and heterogeneous lignocellulose structures, among which hemicellulose significantly affects interfibrillar interactions due to its unique molecular structure and micro-distribution pattern. Inspired by this fact, we amplify the hemicellulose stimulation effect on nanofibrillation using an on-demand regulated ionic liquid/water cosolvent and dissociate ultrahigh aspect ratio (2213) elementary fibrils (diameter = 4.7 nm) comprising approaching native-state structural carbohydrates from mildly delignified lignocellulose fibers ( i.e. holocellulose) by a low-energy blender. We elucidated the mechanism for the exceptional disassembly behavior of holocellulose fibers: the high-level swelling of the amorphous and negatively charged hemicellulose phase weakens fibril–fibril interactions. The high-aspect-ratio morphology, well-preserved cellulose molecular structure, and hemicellulose-rich surface chemistry of the as-prepared nanofibrils significantly affect their self-assembly behavior and contribute to the extraordinary mechanical and optical performances of the corresponding nanopaper that conventional cellulose nano-papers/composites retain unsurpassed, e.g. , overcome general conflicts between strength (310 MPa) and toughness (53 MJ m −3 ) and between transparency (86%) and haze (77%). This work provides a scale-up, ecologically and economically efficient lignocellulose nanostructure-engineered strategy for manufacturing high-performance structural nanomaterials towards a high-tech and carbon-neutral future.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/D3GC04029A</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-6684-7381</orcidid><orcidid>https://orcid.org/0009-0002-2106-361X</orcidid><orcidid>https://orcid.org/0009-0000-2801-4824</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9262
ispartof Green chemistry : an international journal and green chemistry resource : GC, 2024-01, Vol.26 (2), p.879-894
issn 1463-9262
1463-9270
language eng
recordid cdi_proquest_journals_2917189452
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Carbohydrates
Cellulose
Dismantling
Fibers
Fibrils
Hemicellulose
Heterostructures
High aspect ratio
Ionic liquids
Lignocellulose
Molecular structure
Nanomaterials
Nanotechnology
Self-assembly
Surface chemistry
title Weakening fibril–fibril interactions via an on-demand regulation of hemicellulose phase towards the facile disassembly of lignocellulose heterostructure into approaching native-state elementary fibrils
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A30%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weakening%20fibril%E2%80%93fibril%20interactions%20via%20an%20on-demand%20regulation%20of%20hemicellulose%20phase%20towards%20the%20facile%20disassembly%20of%20lignocellulose%20heterostructure%20into%20approaching%20native-state%20elementary%20fibrils&rft.jtitle=Green%20chemistry%20:%20an%20international%20journal%20and%20green%20chemistry%20resource%20:%20GC&rft.au=Jiang,%20Yan&rft.date=2024-01-22&rft.volume=26&rft.issue=2&rft.spage=879&rft.epage=894&rft.pages=879-894&rft.issn=1463-9262&rft.eissn=1463-9270&rft_id=info:doi/10.1039/D3GC04029A&rft_dat=%3Cproquest_cross%3E2917189452%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917189452&rft_id=info:pmid/&rfr_iscdi=true