Approximate Lie symmetries of the Navier-Stokes equations

In the framework of the theory of approximate transformation groups proposed by Baikov, Gaziziv and Ibragimov [1], the first-order approximate symmetry operator is calculated for the Navier-Stokes equations. The symmetries of the coupled system obtained by expanding the dependent variables of the Na...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nonlinear mathematical physics 2007-01, Vol.14 (2), p.157-163
Hauptverfasser: Grebenev, V N, Oberlack, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 163
container_issue 2
container_start_page 157
container_title Journal of nonlinear mathematical physics
container_volume 14
creator Grebenev, V N
Oberlack, M
description In the framework of the theory of approximate transformation groups proposed by Baikov, Gaziziv and Ibragimov [1], the first-order approximate symmetry operator is calculated for the Navier-Stokes equations. The symmetries of the coupled system obtained by expanding the dependent variables of the Navier-Stokes equations in the perturbation series with respect to a small parameter (viscosity) are used to derive approximate symmetries in the sense by Baikov et al.
doi_str_mv 10.2991/jnmp.2007.14.2.1
format Article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_2917108948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917108948</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-ea08ae04f86b113bc9b233b6d8bb8162f05c8b58177b7501b03affc50ed47eff3</originalsourceid><addsrcrecordid>eNp1kM1PwzAMxSMEEmNw51iJc4ud9CMVp2mCgTTBAThHSZeIjLXpkgzYf0-mceVky3rPfv4Rco1Q0LbF2_XQjwUFaAosC1rgCZlg09Q58Iqepr4Emre0wnNyEcIagDU15xPSzsbRux_by6izpdVZ2Pe9jt7qkDmTxQ-dPcsvq33-Gt1nGurtTkbrhnBJzozcBH31V6fk_eH-bf6YL18WT_PZMu9YXcVcS-BSQ2l4rRCZ6lpFGVP1iivFsaYGqo6riqewqqkAFTBpTFeBXpWNNoZNyc1xb8q53ekQxdrt_JBOCtpig8DbkicVHFWddyF4bcTo01N-LxDEAZA4ABIHQAJLQQUmy93RYgfjfC-_nd-sRJT7jfPGy6GzQbB_3b8-UG43</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917108948</pqid></control><display><type>article</type><title>Approximate Lie symmetries of the Navier-Stokes equations</title><source>SpringerLink Journals (MCLS)</source><source>EZB Electronic Journals Library</source><creator>Grebenev, V N ; Oberlack, M</creator><creatorcontrib>Grebenev, V N ; Oberlack, M</creatorcontrib><description>In the framework of the theory of approximate transformation groups proposed by Baikov, Gaziziv and Ibragimov [1], the first-order approximate symmetry operator is calculated for the Navier-Stokes equations. The symmetries of the coupled system obtained by expanding the dependent variables of the Navier-Stokes equations in the perturbation series with respect to a small parameter (viscosity) are used to derive approximate symmetries in the sense by Baikov et al.</description><identifier>ISSN: 1402-9251</identifier><identifier>ISSN: 1776-0852</identifier><identifier>EISSN: 1776-0852</identifier><identifier>DOI: 10.2991/jnmp.2007.14.2.1</identifier><language>eng</language><publisher>Singapore: Taylor &amp; Francis Group</publisher><subject>Dependent variables ; Fluid flow ; Mathematical analysis ; Navier-Stokes equations</subject><ispartof>Journal of nonlinear mathematical physics, 2007-01, Vol.14 (2), p.157-163</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2007</rights><rights>V N Grebenev, M Oberlack 2007. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-ea08ae04f86b113bc9b233b6d8bb8162f05c8b58177b7501b03affc50ed47eff3</citedby><cites>FETCH-LOGICAL-c365t-ea08ae04f86b113bc9b233b6d8bb8162f05c8b58177b7501b03affc50ed47eff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Grebenev, V N</creatorcontrib><creatorcontrib>Oberlack, M</creatorcontrib><title>Approximate Lie symmetries of the Navier-Stokes equations</title><title>Journal of nonlinear mathematical physics</title><description>In the framework of the theory of approximate transformation groups proposed by Baikov, Gaziziv and Ibragimov [1], the first-order approximate symmetry operator is calculated for the Navier-Stokes equations. The symmetries of the coupled system obtained by expanding the dependent variables of the Navier-Stokes equations in the perturbation series with respect to a small parameter (viscosity) are used to derive approximate symmetries in the sense by Baikov et al.</description><subject>Dependent variables</subject><subject>Fluid flow</subject><subject>Mathematical analysis</subject><subject>Navier-Stokes equations</subject><issn>1402-9251</issn><issn>1776-0852</issn><issn>1776-0852</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp1kM1PwzAMxSMEEmNw51iJc4ud9CMVp2mCgTTBAThHSZeIjLXpkgzYf0-mceVky3rPfv4Rco1Q0LbF2_XQjwUFaAosC1rgCZlg09Q58Iqepr4Emre0wnNyEcIagDU15xPSzsbRux_by6izpdVZ2Pe9jt7qkDmTxQ-dPcsvq33-Gt1nGurtTkbrhnBJzozcBH31V6fk_eH-bf6YL18WT_PZMu9YXcVcS-BSQ2l4rRCZ6lpFGVP1iivFsaYGqo6riqewqqkAFTBpTFeBXpWNNoZNyc1xb8q53ekQxdrt_JBOCtpig8DbkicVHFWddyF4bcTo01N-LxDEAZA4ABIHQAJLQQUmy93RYgfjfC-_nd-sRJT7jfPGy6GzQbB_3b8-UG43</recordid><startdate>20070101</startdate><enddate>20070101</enddate><creator>Grebenev, V N</creator><creator>Oberlack, M</creator><general>Taylor &amp; Francis Group</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20070101</creationdate><title>Approximate Lie symmetries of the Navier-Stokes equations</title><author>Grebenev, V N ; Oberlack, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-ea08ae04f86b113bc9b233b6d8bb8162f05c8b58177b7501b03affc50ed47eff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Dependent variables</topic><topic>Fluid flow</topic><topic>Mathematical analysis</topic><topic>Navier-Stokes equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grebenev, V N</creatorcontrib><creatorcontrib>Oberlack, M</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of nonlinear mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grebenev, V N</au><au>Oberlack, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximate Lie symmetries of the Navier-Stokes equations</atitle><jtitle>Journal of nonlinear mathematical physics</jtitle><date>2007-01-01</date><risdate>2007</risdate><volume>14</volume><issue>2</issue><spage>157</spage><epage>163</epage><pages>157-163</pages><issn>1402-9251</issn><issn>1776-0852</issn><eissn>1776-0852</eissn><abstract>In the framework of the theory of approximate transformation groups proposed by Baikov, Gaziziv and Ibragimov [1], the first-order approximate symmetry operator is calculated for the Navier-Stokes equations. The symmetries of the coupled system obtained by expanding the dependent variables of the Navier-Stokes equations in the perturbation series with respect to a small parameter (viscosity) are used to derive approximate symmetries in the sense by Baikov et al.</abstract><cop>Singapore</cop><pub>Taylor &amp; Francis Group</pub><doi>10.2991/jnmp.2007.14.2.1</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1402-9251
ispartof Journal of nonlinear mathematical physics, 2007-01, Vol.14 (2), p.157-163
issn 1402-9251
1776-0852
1776-0852
language eng
recordid cdi_proquest_journals_2917108948
source SpringerLink Journals (MCLS); EZB Electronic Journals Library
subjects Dependent variables
Fluid flow
Mathematical analysis
Navier-Stokes equations
title Approximate Lie symmetries of the Navier-Stokes equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T05%3A12%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximate%20Lie%20symmetries%20of%20the%20Navier-Stokes%20equations&rft.jtitle=Journal%20of%20nonlinear%20mathematical%20physics&rft.au=Grebenev,%20V%20N&rft.date=2007-01-01&rft.volume=14&rft.issue=2&rft.spage=157&rft.epage=163&rft.pages=157-163&rft.issn=1402-9251&rft.eissn=1776-0852&rft_id=info:doi/10.2991/jnmp.2007.14.2.1&rft_dat=%3Cproquest_infor%3E2917108948%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917108948&rft_id=info:pmid/&rfr_iscdi=true