Improving the cycling stability of lithium-ion batteries with a dry-processed cathode via the synergistic effect of carboxymethyl cellulose and siloxane
The solvent-free dry process for fabricating battery electrodes has received widespread attention owing to its low cost and environmental friendliness. However, the conventional polytetrafluoroethylene (PTFE) used as a binder in the preparation of dry-processed electrodes results in insufficient adh...
Gespeichert in:
Veröffentlicht in: | Science China materials 2024, Vol.67 (1), p.76-84 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 84 |
---|---|
container_issue | 1 |
container_start_page | 76 |
container_title | Science China materials |
container_volume | 67 |
creator | Ni, Minghan Zhao, Yang Xu, Nuo Kong, Mengxin Ma, Yanfeng Li, Chenxi Zhang, Hongtao Chen, Yongsheng |
description | The solvent-free dry process for fabricating battery electrodes has received widespread attention owing to its low cost and environmental friendliness. However, the conventional polytetrafluoroethylene (PTFE) used as a binder in the preparation of dry-processed electrodes results in insufficient adhesion, limiting their practical industrial applications. Herein, we reported an industrially viable dry process for producing lithium-ion batteries using the combination of carboxymethyl cellulose (CMC) and siloxane as the binder composite. The synergistic effect of CMC and siloxane enhanced the adhesive performance of the electrode, thereby improving the mechanical strength and electrochemical performance of the developed dry-processed electrode. Half cells based on aluminum-doped lithium manganese oxide (LMA) dry-processed electrodes with CMC and siloxane (LMA/CS) exhibited a capacity retention of 79.8% after 200 cycles at 1 C. Furthermore, LMA/CS∥lithium titanate oxide full cells with a high mass loading of 20.6 mg cm
−2
demonstrated an excellent capacity retention of 89.2% after 1000 cycles, which is considerably higher than that of cells based on slurry-processed electrodes prepared with a polyvinylidene fluoride binder and conventional dry-processed electrodes prepared using a PTFE binder. |
doi_str_mv | 10.1007/s40843-023-2673-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2916686667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2916686667</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-b6fce6f7ffa0426fdf8fd2ae38fedf9763754735fce525f821e889995e828e3c3</originalsourceid><addsrcrecordid>eNp1kU1LAzEQhoMoWKo_wFvAczQfu9nkKOIXCF70HNLspI1sNzVJ1f0n_lxTK3jyNMPwvs8w8yJ0xugFo7S7zA1VjSCUC8JlJ4g8QDPOtCZNS9lh7aluieJcHqPTnF8ppUy2jGk1Q18P602K72Fc4rIC7CY37Ppc7CIMoUw4elzrKmzXJMQRL2wpkAJk_FGn2OI-TaQSHOQMPXa2rGIP-D3YH16eRkjLkEtwGLwHV3ZAZ9Mifk5rKKtpwA6GYTvEDNiOPc5hiJ92hBN05O2Q4fS3ztHL7c3z9T15fLp7uL56JE4wVshCegfSd95b2nDpe698zy0I5aH3upOia5tOtFXV8tYrzkAprXULiisQTszR-Z5bj3jbQi7mNW7TWFcarpmUSsr60jlie5VLMecE3mxSWNs0GUbNLgOzz8DUDMwuAyOrh-89uWrHJaQ_8v-mb8lQjeA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2916686667</pqid></control><display><type>article</type><title>Improving the cycling stability of lithium-ion batteries with a dry-processed cathode via the synergistic effect of carboxymethyl cellulose and siloxane</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Ni, Minghan ; Zhao, Yang ; Xu, Nuo ; Kong, Mengxin ; Ma, Yanfeng ; Li, Chenxi ; Zhang, Hongtao ; Chen, Yongsheng</creator><creatorcontrib>Ni, Minghan ; Zhao, Yang ; Xu, Nuo ; Kong, Mengxin ; Ma, Yanfeng ; Li, Chenxi ; Zhang, Hongtao ; Chen, Yongsheng</creatorcontrib><description>The solvent-free dry process for fabricating battery electrodes has received widespread attention owing to its low cost and environmental friendliness. However, the conventional polytetrafluoroethylene (PTFE) used as a binder in the preparation of dry-processed electrodes results in insufficient adhesion, limiting their practical industrial applications. Herein, we reported an industrially viable dry process for producing lithium-ion batteries using the combination of carboxymethyl cellulose (CMC) and siloxane as the binder composite. The synergistic effect of CMC and siloxane enhanced the adhesive performance of the electrode, thereby improving the mechanical strength and electrochemical performance of the developed dry-processed electrode. Half cells based on aluminum-doped lithium manganese oxide (LMA) dry-processed electrodes with CMC and siloxane (LMA/CS) exhibited a capacity retention of 79.8% after 200 cycles at 1 C. Furthermore, LMA/CS∥lithium titanate oxide full cells with a high mass loading of 20.6 mg cm
−2
demonstrated an excellent capacity retention of 89.2% after 1000 cycles, which is considerably higher than that of cells based on slurry-processed electrodes prepared with a polyvinylidene fluoride binder and conventional dry-processed electrodes prepared using a PTFE binder.</description><identifier>ISSN: 2095-8226</identifier><identifier>EISSN: 2199-4501</identifier><identifier>DOI: 10.1007/s40843-023-2673-6</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Carboxymethyl cellulose ; Cellulose ; Chemistry and Materials Science ; Chemistry/Food Science ; Electrochemical analysis ; Electrodes ; Industrial applications ; Lithium ; Lithium manganese oxides ; Lithium-ion batteries ; Materials Science ; Polytetrafluoroethylene ; Polyvinylidene fluorides ; Rechargeable batteries ; Siloxanes ; Synergistic effect</subject><ispartof>Science China materials, 2024, Vol.67 (1), p.76-84</ispartof><rights>Science China Press 2023</rights><rights>Science China Press 2023.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-b6fce6f7ffa0426fdf8fd2ae38fedf9763754735fce525f821e889995e828e3c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40843-023-2673-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40843-023-2673-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ni, Minghan</creatorcontrib><creatorcontrib>Zhao, Yang</creatorcontrib><creatorcontrib>Xu, Nuo</creatorcontrib><creatorcontrib>Kong, Mengxin</creatorcontrib><creatorcontrib>Ma, Yanfeng</creatorcontrib><creatorcontrib>Li, Chenxi</creatorcontrib><creatorcontrib>Zhang, Hongtao</creatorcontrib><creatorcontrib>Chen, Yongsheng</creatorcontrib><title>Improving the cycling stability of lithium-ion batteries with a dry-processed cathode via the synergistic effect of carboxymethyl cellulose and siloxane</title><title>Science China materials</title><addtitle>Sci. China Mater</addtitle><description>The solvent-free dry process for fabricating battery electrodes has received widespread attention owing to its low cost and environmental friendliness. However, the conventional polytetrafluoroethylene (PTFE) used as a binder in the preparation of dry-processed electrodes results in insufficient adhesion, limiting their practical industrial applications. Herein, we reported an industrially viable dry process for producing lithium-ion batteries using the combination of carboxymethyl cellulose (CMC) and siloxane as the binder composite. The synergistic effect of CMC and siloxane enhanced the adhesive performance of the electrode, thereby improving the mechanical strength and electrochemical performance of the developed dry-processed electrode. Half cells based on aluminum-doped lithium manganese oxide (LMA) dry-processed electrodes with CMC and siloxane (LMA/CS) exhibited a capacity retention of 79.8% after 200 cycles at 1 C. Furthermore, LMA/CS∥lithium titanate oxide full cells with a high mass loading of 20.6 mg cm
−2
demonstrated an excellent capacity retention of 89.2% after 1000 cycles, which is considerably higher than that of cells based on slurry-processed electrodes prepared with a polyvinylidene fluoride binder and conventional dry-processed electrodes prepared using a PTFE binder.</description><subject>Carboxymethyl cellulose</subject><subject>Cellulose</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Electrochemical analysis</subject><subject>Electrodes</subject><subject>Industrial applications</subject><subject>Lithium</subject><subject>Lithium manganese oxides</subject><subject>Lithium-ion batteries</subject><subject>Materials Science</subject><subject>Polytetrafluoroethylene</subject><subject>Polyvinylidene fluorides</subject><subject>Rechargeable batteries</subject><subject>Siloxanes</subject><subject>Synergistic effect</subject><issn>2095-8226</issn><issn>2199-4501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kU1LAzEQhoMoWKo_wFvAczQfu9nkKOIXCF70HNLspI1sNzVJ1f0n_lxTK3jyNMPwvs8w8yJ0xugFo7S7zA1VjSCUC8JlJ4g8QDPOtCZNS9lh7aluieJcHqPTnF8ppUy2jGk1Q18P602K72Fc4rIC7CY37Ppc7CIMoUw4elzrKmzXJMQRL2wpkAJk_FGn2OI-TaQSHOQMPXa2rGIP-D3YH16eRkjLkEtwGLwHV3ZAZ9Mifk5rKKtpwA6GYTvEDNiOPc5hiJ92hBN05O2Q4fS3ztHL7c3z9T15fLp7uL56JE4wVshCegfSd95b2nDpe698zy0I5aH3upOia5tOtFXV8tYrzkAprXULiisQTszR-Z5bj3jbQi7mNW7TWFcarpmUSsr60jlie5VLMecE3mxSWNs0GUbNLgOzz8DUDMwuAyOrh-89uWrHJaQ_8v-mb8lQjeA</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Ni, Minghan</creator><creator>Zhao, Yang</creator><creator>Xu, Nuo</creator><creator>Kong, Mengxin</creator><creator>Ma, Yanfeng</creator><creator>Li, Chenxi</creator><creator>Zhang, Hongtao</creator><creator>Chen, Yongsheng</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>Improving the cycling stability of lithium-ion batteries with a dry-processed cathode via the synergistic effect of carboxymethyl cellulose and siloxane</title><author>Ni, Minghan ; Zhao, Yang ; Xu, Nuo ; Kong, Mengxin ; Ma, Yanfeng ; Li, Chenxi ; Zhang, Hongtao ; Chen, Yongsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-b6fce6f7ffa0426fdf8fd2ae38fedf9763754735fce525f821e889995e828e3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carboxymethyl cellulose</topic><topic>Cellulose</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Electrochemical analysis</topic><topic>Electrodes</topic><topic>Industrial applications</topic><topic>Lithium</topic><topic>Lithium manganese oxides</topic><topic>Lithium-ion batteries</topic><topic>Materials Science</topic><topic>Polytetrafluoroethylene</topic><topic>Polyvinylidene fluorides</topic><topic>Rechargeable batteries</topic><topic>Siloxanes</topic><topic>Synergistic effect</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ni, Minghan</creatorcontrib><creatorcontrib>Zhao, Yang</creatorcontrib><creatorcontrib>Xu, Nuo</creatorcontrib><creatorcontrib>Kong, Mengxin</creatorcontrib><creatorcontrib>Ma, Yanfeng</creatorcontrib><creatorcontrib>Li, Chenxi</creatorcontrib><creatorcontrib>Zhang, Hongtao</creatorcontrib><creatorcontrib>Chen, Yongsheng</creatorcontrib><collection>CrossRef</collection><jtitle>Science China materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ni, Minghan</au><au>Zhao, Yang</au><au>Xu, Nuo</au><au>Kong, Mengxin</au><au>Ma, Yanfeng</au><au>Li, Chenxi</au><au>Zhang, Hongtao</au><au>Chen, Yongsheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving the cycling stability of lithium-ion batteries with a dry-processed cathode via the synergistic effect of carboxymethyl cellulose and siloxane</atitle><jtitle>Science China materials</jtitle><stitle>Sci. China Mater</stitle><date>2024</date><risdate>2024</risdate><volume>67</volume><issue>1</issue><spage>76</spage><epage>84</epage><pages>76-84</pages><issn>2095-8226</issn><eissn>2199-4501</eissn><abstract>The solvent-free dry process for fabricating battery electrodes has received widespread attention owing to its low cost and environmental friendliness. However, the conventional polytetrafluoroethylene (PTFE) used as a binder in the preparation of dry-processed electrodes results in insufficient adhesion, limiting their practical industrial applications. Herein, we reported an industrially viable dry process for producing lithium-ion batteries using the combination of carboxymethyl cellulose (CMC) and siloxane as the binder composite. The synergistic effect of CMC and siloxane enhanced the adhesive performance of the electrode, thereby improving the mechanical strength and electrochemical performance of the developed dry-processed electrode. Half cells based on aluminum-doped lithium manganese oxide (LMA) dry-processed electrodes with CMC and siloxane (LMA/CS) exhibited a capacity retention of 79.8% after 200 cycles at 1 C. Furthermore, LMA/CS∥lithium titanate oxide full cells with a high mass loading of 20.6 mg cm
−2
demonstrated an excellent capacity retention of 89.2% after 1000 cycles, which is considerably higher than that of cells based on slurry-processed electrodes prepared with a polyvinylidene fluoride binder and conventional dry-processed electrodes prepared using a PTFE binder.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s40843-023-2673-6</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2095-8226 |
ispartof | Science China materials, 2024, Vol.67 (1), p.76-84 |
issn | 2095-8226 2199-4501 |
language | eng |
recordid | cdi_proquest_journals_2916686667 |
source | SpringerLink Journals; Alma/SFX Local Collection |
subjects | Carboxymethyl cellulose Cellulose Chemistry and Materials Science Chemistry/Food Science Electrochemical analysis Electrodes Industrial applications Lithium Lithium manganese oxides Lithium-ion batteries Materials Science Polytetrafluoroethylene Polyvinylidene fluorides Rechargeable batteries Siloxanes Synergistic effect |
title | Improving the cycling stability of lithium-ion batteries with a dry-processed cathode via the synergistic effect of carboxymethyl cellulose and siloxane |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A31%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20the%20cycling%20stability%20of%20lithium-ion%20batteries%20with%20a%20dry-processed%20cathode%20via%20the%20synergistic%20effect%20of%20carboxymethyl%20cellulose%20and%20siloxane&rft.jtitle=Science%20China%20materials&rft.au=Ni,%20Minghan&rft.date=2024&rft.volume=67&rft.issue=1&rft.spage=76&rft.epage=84&rft.pages=76-84&rft.issn=2095-8226&rft.eissn=2199-4501&rft_id=info:doi/10.1007/s40843-023-2673-6&rft_dat=%3Cproquest_cross%3E2916686667%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2916686667&rft_id=info:pmid/&rfr_iscdi=true |