Push–pull substituent design of fullerene dimer at the buried interface toward stable and efficient perovskite solar cells

Defective interface contact is detrimental to the performance of perovskite solar cells (PSCs), by inducing hysteresis, reducing power conversion efficiency (PCE) and deteriorating operation stability. Interlayer materials are commonly utilized to eliminate interfacial defects; however the design of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China materials 2024, Vol.67 (1), p.58-66
Hauptverfasser: Wang, Hui, Guo, Chuanhang, Li, Fabao, Zeng, Shuai, Li, Xiangyang, Fu, Huayu, Wang, Tao, Liu, Dan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 66
container_issue 1
container_start_page 58
container_title Science China materials
container_volume 67
creator Wang, Hui
Guo, Chuanhang
Li, Fabao
Zeng, Shuai
Li, Xiangyang
Fu, Huayu
Wang, Tao
Liu, Dan
description Defective interface contact is detrimental to the performance of perovskite solar cells (PSCs), by inducing hysteresis, reducing power conversion efficiency (PCE) and deteriorating operation stability. Interlayer materials are commonly utilized to eliminate interfacial defects; however the design of efficient molecules with superior charge transport and defect passivation capabilities remains a big challenge. Herein, four novel fullerene dimers DC 60 –R1–R2 (R1 = H or Cl, R2 = H or MeO) are synthesized as the interlayers between metal oxides and perovskites. The polar substituents of these fullerene dimers are found to determine the intermolecular interaction between these fullerene molecules, with DC 60 –Cl–MeO showing the greatest intermolecular charge transport and passivation ability due to the strongest push-pull effect of the electron-accepting chloride (–Cl) and electron-donating methoxy (–MeO). The non-encapsulated planar (FAPbI 3 ) x (MAPbBr 3 ) 1− x PSC with DC 60 –Cl–MeO as the interlayer delivers a maximum PCE of 23.3% with no hysteresis, maintaining nearly 100% of the initial efficiency after being stored in a high humidity environment over 500 h. The extrapolated T S80 lifetime (the time required to reach 80% of initial performance) of the PSC device could be extended to 1110 h at the maximum power point operation condition under one sun illumination without any encapsulation or inert gas protection, superior to the pure SnO 2 -based device (0.5 h). Fullerene derivatives with push-pull substituents are therefore promising candidates as the interfacial materials for PSCs to receive high performance.
doi_str_mv 10.1007/s40843-023-2675-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2916686633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2916686633</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-e7daeb48665cc8783fba89ec5d68d89915e1493f3c5859f34cc96d012aebb7c53</originalsourceid><addsrcrecordid>eNp1kMtKBDEQRRtRUMb5AHcB1615dNLJUsQXDOhC1yGdVMZoT_eYpBXBhf_gH_olZhjBlasqqHtuwamqI4JPCMbtaWqwbFiNKaupaHktdqoDSpSqG47Jbtmx4rWkVOxX85SeMMZEcEKUPKg-7qb0-P35tZ76HqWpSznkCYaMHKSwHNDokS8niDAAcmEFEZmM8iOgbooBHApDhuiNBZTHNxMdStl0PSAzOATeBxs2bWuI42t6DhlQGnsTkYW-T4fVnjd9gvnvnFUPlxf359f14vbq5vxsUVsqZK6hdQa6RgrBrZWtZL4zUoHlTkgnlSIcSKOYZ5ZLrjxrrFXCYUIL1bWWs1l1vO1dx_FlgpT10zjFobzUVBEhSjNjJUW2KRvHlCJ4vY5hZeK7JlhvPOutZ108641nLQpDt0wq2WEJ8a_5f-gHPkGDuw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2916686633</pqid></control><display><type>article</type><title>Push–pull substituent design of fullerene dimer at the buried interface toward stable and efficient perovskite solar cells</title><source>Springer Online Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Wang, Hui ; Guo, Chuanhang ; Li, Fabao ; Zeng, Shuai ; Li, Xiangyang ; Fu, Huayu ; Wang, Tao ; Liu, Dan</creator><creatorcontrib>Wang, Hui ; Guo, Chuanhang ; Li, Fabao ; Zeng, Shuai ; Li, Xiangyang ; Fu, Huayu ; Wang, Tao ; Liu, Dan</creatorcontrib><description>Defective interface contact is detrimental to the performance of perovskite solar cells (PSCs), by inducing hysteresis, reducing power conversion efficiency (PCE) and deteriorating operation stability. Interlayer materials are commonly utilized to eliminate interfacial defects; however the design of efficient molecules with superior charge transport and defect passivation capabilities remains a big challenge. Herein, four novel fullerene dimers DC 60 –R1–R2 (R1 = H or Cl, R2 = H or MeO) are synthesized as the interlayers between metal oxides and perovskites. The polar substituents of these fullerene dimers are found to determine the intermolecular interaction between these fullerene molecules, with DC 60 –Cl–MeO showing the greatest intermolecular charge transport and passivation ability due to the strongest push-pull effect of the electron-accepting chloride (–Cl) and electron-donating methoxy (–MeO). The non-encapsulated planar (FAPbI 3 ) x (MAPbBr 3 ) 1− x PSC with DC 60 –Cl–MeO as the interlayer delivers a maximum PCE of 23.3% with no hysteresis, maintaining nearly 100% of the initial efficiency after being stored in a high humidity environment over 500 h. The extrapolated T S80 lifetime (the time required to reach 80% of initial performance) of the PSC device could be extended to 1110 h at the maximum power point operation condition under one sun illumination without any encapsulation or inert gas protection, superior to the pure SnO 2 -based device (0.5 h). Fullerene derivatives with push-pull substituents are therefore promising candidates as the interfacial materials for PSCs to receive high performance.</description><identifier>ISSN: 2095-8226</identifier><identifier>EISSN: 2199-4501</identifier><identifier>DOI: 10.1007/s40843-023-2675-6</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Charge transport ; Chemistry and Materials Science ; Chemistry/Food Science ; Design defects ; Dimers ; Encapsulation ; Energy conversion efficiency ; Fullerenes ; Hysteresis ; Interface stability ; Interlayers ; Materials Science ; Maximum power ; Metal oxides ; Passivity ; Perovskites ; Photovoltaic cells ; Rare gases ; Solar cells ; Tin dioxide</subject><ispartof>Science China materials, 2024, Vol.67 (1), p.58-66</ispartof><rights>Science China Press 2023</rights><rights>Science China Press 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-e7daeb48665cc8783fba89ec5d68d89915e1493f3c5859f34cc96d012aebb7c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40843-023-2675-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40843-023-2675-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Guo, Chuanhang</creatorcontrib><creatorcontrib>Li, Fabao</creatorcontrib><creatorcontrib>Zeng, Shuai</creatorcontrib><creatorcontrib>Li, Xiangyang</creatorcontrib><creatorcontrib>Fu, Huayu</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Liu, Dan</creatorcontrib><title>Push–pull substituent design of fullerene dimer at the buried interface toward stable and efficient perovskite solar cells</title><title>Science China materials</title><addtitle>Sci. China Mater</addtitle><description>Defective interface contact is detrimental to the performance of perovskite solar cells (PSCs), by inducing hysteresis, reducing power conversion efficiency (PCE) and deteriorating operation stability. Interlayer materials are commonly utilized to eliminate interfacial defects; however the design of efficient molecules with superior charge transport and defect passivation capabilities remains a big challenge. Herein, four novel fullerene dimers DC 60 –R1–R2 (R1 = H or Cl, R2 = H or MeO) are synthesized as the interlayers between metal oxides and perovskites. The polar substituents of these fullerene dimers are found to determine the intermolecular interaction between these fullerene molecules, with DC 60 –Cl–MeO showing the greatest intermolecular charge transport and passivation ability due to the strongest push-pull effect of the electron-accepting chloride (–Cl) and electron-donating methoxy (–MeO). The non-encapsulated planar (FAPbI 3 ) x (MAPbBr 3 ) 1− x PSC with DC 60 –Cl–MeO as the interlayer delivers a maximum PCE of 23.3% with no hysteresis, maintaining nearly 100% of the initial efficiency after being stored in a high humidity environment over 500 h. The extrapolated T S80 lifetime (the time required to reach 80% of initial performance) of the PSC device could be extended to 1110 h at the maximum power point operation condition under one sun illumination without any encapsulation or inert gas protection, superior to the pure SnO 2 -based device (0.5 h). Fullerene derivatives with push-pull substituents are therefore promising candidates as the interfacial materials for PSCs to receive high performance.</description><subject>Charge transport</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Design defects</subject><subject>Dimers</subject><subject>Encapsulation</subject><subject>Energy conversion efficiency</subject><subject>Fullerenes</subject><subject>Hysteresis</subject><subject>Interface stability</subject><subject>Interlayers</subject><subject>Materials Science</subject><subject>Maximum power</subject><subject>Metal oxides</subject><subject>Passivity</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Rare gases</subject><subject>Solar cells</subject><subject>Tin dioxide</subject><issn>2095-8226</issn><issn>2199-4501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKBDEQRRtRUMb5AHcB1615dNLJUsQXDOhC1yGdVMZoT_eYpBXBhf_gH_olZhjBlasqqHtuwamqI4JPCMbtaWqwbFiNKaupaHktdqoDSpSqG47Jbtmx4rWkVOxX85SeMMZEcEKUPKg-7qb0-P35tZ76HqWpSznkCYaMHKSwHNDokS8niDAAcmEFEZmM8iOgbooBHApDhuiNBZTHNxMdStl0PSAzOATeBxs2bWuI42t6DhlQGnsTkYW-T4fVnjd9gvnvnFUPlxf359f14vbq5vxsUVsqZK6hdQa6RgrBrZWtZL4zUoHlTkgnlSIcSKOYZ5ZLrjxrrFXCYUIL1bWWs1l1vO1dx_FlgpT10zjFobzUVBEhSjNjJUW2KRvHlCJ4vY5hZeK7JlhvPOutZ108641nLQpDt0wq2WEJ8a_5f-gHPkGDuw</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Wang, Hui</creator><creator>Guo, Chuanhang</creator><creator>Li, Fabao</creator><creator>Zeng, Shuai</creator><creator>Li, Xiangyang</creator><creator>Fu, Huayu</creator><creator>Wang, Tao</creator><creator>Liu, Dan</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>Push–pull substituent design of fullerene dimer at the buried interface toward stable and efficient perovskite solar cells</title><author>Wang, Hui ; Guo, Chuanhang ; Li, Fabao ; Zeng, Shuai ; Li, Xiangyang ; Fu, Huayu ; Wang, Tao ; Liu, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-e7daeb48665cc8783fba89ec5d68d89915e1493f3c5859f34cc96d012aebb7c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Charge transport</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Design defects</topic><topic>Dimers</topic><topic>Encapsulation</topic><topic>Energy conversion efficiency</topic><topic>Fullerenes</topic><topic>Hysteresis</topic><topic>Interface stability</topic><topic>Interlayers</topic><topic>Materials Science</topic><topic>Maximum power</topic><topic>Metal oxides</topic><topic>Passivity</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Rare gases</topic><topic>Solar cells</topic><topic>Tin dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Guo, Chuanhang</creatorcontrib><creatorcontrib>Li, Fabao</creatorcontrib><creatorcontrib>Zeng, Shuai</creatorcontrib><creatorcontrib>Li, Xiangyang</creatorcontrib><creatorcontrib>Fu, Huayu</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Liu, Dan</creatorcontrib><collection>CrossRef</collection><jtitle>Science China materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Hui</au><au>Guo, Chuanhang</au><au>Li, Fabao</au><au>Zeng, Shuai</au><au>Li, Xiangyang</au><au>Fu, Huayu</au><au>Wang, Tao</au><au>Liu, Dan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Push–pull substituent design of fullerene dimer at the buried interface toward stable and efficient perovskite solar cells</atitle><jtitle>Science China materials</jtitle><stitle>Sci. China Mater</stitle><date>2024</date><risdate>2024</risdate><volume>67</volume><issue>1</issue><spage>58</spage><epage>66</epage><pages>58-66</pages><issn>2095-8226</issn><eissn>2199-4501</eissn><abstract>Defective interface contact is detrimental to the performance of perovskite solar cells (PSCs), by inducing hysteresis, reducing power conversion efficiency (PCE) and deteriorating operation stability. Interlayer materials are commonly utilized to eliminate interfacial defects; however the design of efficient molecules with superior charge transport and defect passivation capabilities remains a big challenge. Herein, four novel fullerene dimers DC 60 –R1–R2 (R1 = H or Cl, R2 = H or MeO) are synthesized as the interlayers between metal oxides and perovskites. The polar substituents of these fullerene dimers are found to determine the intermolecular interaction between these fullerene molecules, with DC 60 –Cl–MeO showing the greatest intermolecular charge transport and passivation ability due to the strongest push-pull effect of the electron-accepting chloride (–Cl) and electron-donating methoxy (–MeO). The non-encapsulated planar (FAPbI 3 ) x (MAPbBr 3 ) 1− x PSC with DC 60 –Cl–MeO as the interlayer delivers a maximum PCE of 23.3% with no hysteresis, maintaining nearly 100% of the initial efficiency after being stored in a high humidity environment over 500 h. The extrapolated T S80 lifetime (the time required to reach 80% of initial performance) of the PSC device could be extended to 1110 h at the maximum power point operation condition under one sun illumination without any encapsulation or inert gas protection, superior to the pure SnO 2 -based device (0.5 h). Fullerene derivatives with push-pull substituents are therefore promising candidates as the interfacial materials for PSCs to receive high performance.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s40843-023-2675-6</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2095-8226
ispartof Science China materials, 2024, Vol.67 (1), p.58-66
issn 2095-8226
2199-4501
language eng
recordid cdi_proquest_journals_2916686633
source Springer Online Journals Complete; Alma/SFX Local Collection
subjects Charge transport
Chemistry and Materials Science
Chemistry/Food Science
Design defects
Dimers
Encapsulation
Energy conversion efficiency
Fullerenes
Hysteresis
Interface stability
Interlayers
Materials Science
Maximum power
Metal oxides
Passivity
Perovskites
Photovoltaic cells
Rare gases
Solar cells
Tin dioxide
title Push–pull substituent design of fullerene dimer at the buried interface toward stable and efficient perovskite solar cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T02%3A23%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Push%E2%80%93pull%20substituent%20design%20of%20fullerene%20dimer%20at%20the%20buried%20interface%20toward%20stable%20and%20efficient%20perovskite%20solar%20cells&rft.jtitle=Science%20China%20materials&rft.au=Wang,%20Hui&rft.date=2024&rft.volume=67&rft.issue=1&rft.spage=58&rft.epage=66&rft.pages=58-66&rft.issn=2095-8226&rft.eissn=2199-4501&rft_id=info:doi/10.1007/s40843-023-2675-6&rft_dat=%3Cproquest_cross%3E2916686633%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2916686633&rft_id=info:pmid/&rfr_iscdi=true