Push–pull substituent design of fullerene dimer at the buried interface toward stable and efficient perovskite solar cells
Defective interface contact is detrimental to the performance of perovskite solar cells (PSCs), by inducing hysteresis, reducing power conversion efficiency (PCE) and deteriorating operation stability. Interlayer materials are commonly utilized to eliminate interfacial defects; however the design of...
Gespeichert in:
Veröffentlicht in: | Science China materials 2024, Vol.67 (1), p.58-66 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 66 |
---|---|
container_issue | 1 |
container_start_page | 58 |
container_title | Science China materials |
container_volume | 67 |
creator | Wang, Hui Guo, Chuanhang Li, Fabao Zeng, Shuai Li, Xiangyang Fu, Huayu Wang, Tao Liu, Dan |
description | Defective interface contact is detrimental to the performance of perovskite solar cells (PSCs), by inducing hysteresis, reducing power conversion efficiency (PCE) and deteriorating operation stability. Interlayer materials are commonly utilized to eliminate interfacial defects; however the design of efficient molecules with superior charge transport and defect passivation capabilities remains a big challenge. Herein, four novel fullerene dimers DC
60
–R1–R2 (R1 = H or Cl, R2 = H or MeO) are synthesized as the interlayers between metal oxides and perovskites. The polar substituents of these fullerene dimers are found to determine the intermolecular interaction between these fullerene molecules, with DC
60
–Cl–MeO showing the greatest intermolecular charge transport and passivation ability due to the strongest push-pull effect of the electron-accepting chloride (–Cl) and electron-donating methoxy (–MeO). The non-encapsulated planar (FAPbI
3
)
x
(MAPbBr
3
)
1−
x
PSC with DC
60
–Cl–MeO as the interlayer delivers a maximum PCE of 23.3% with no hysteresis, maintaining nearly 100% of the initial efficiency after being stored in a high humidity environment over 500 h. The extrapolated
T
S80
lifetime (the time required to reach 80% of initial performance) of the PSC device could be extended to 1110 h at the maximum power point operation condition under one sun illumination without any encapsulation or inert gas protection, superior to the pure SnO
2
-based device (0.5 h). Fullerene derivatives with push-pull substituents are therefore promising candidates as the interfacial materials for PSCs to receive high performance. |
doi_str_mv | 10.1007/s40843-023-2675-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2916686633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2916686633</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-e7daeb48665cc8783fba89ec5d68d89915e1493f3c5859f34cc96d012aebb7c53</originalsourceid><addsrcrecordid>eNp1kMtKBDEQRRtRUMb5AHcB1615dNLJUsQXDOhC1yGdVMZoT_eYpBXBhf_gH_olZhjBlasqqHtuwamqI4JPCMbtaWqwbFiNKaupaHktdqoDSpSqG47Jbtmx4rWkVOxX85SeMMZEcEKUPKg-7qb0-P35tZ76HqWpSznkCYaMHKSwHNDokS8niDAAcmEFEZmM8iOgbooBHApDhuiNBZTHNxMdStl0PSAzOATeBxs2bWuI42t6DhlQGnsTkYW-T4fVnjd9gvnvnFUPlxf359f14vbq5vxsUVsqZK6hdQa6RgrBrZWtZL4zUoHlTkgnlSIcSKOYZ5ZLrjxrrFXCYUIL1bWWs1l1vO1dx_FlgpT10zjFobzUVBEhSjNjJUW2KRvHlCJ4vY5hZeK7JlhvPOutZ108641nLQpDt0wq2WEJ8a_5f-gHPkGDuw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2916686633</pqid></control><display><type>article</type><title>Push–pull substituent design of fullerene dimer at the buried interface toward stable and efficient perovskite solar cells</title><source>Springer Online Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Wang, Hui ; Guo, Chuanhang ; Li, Fabao ; Zeng, Shuai ; Li, Xiangyang ; Fu, Huayu ; Wang, Tao ; Liu, Dan</creator><creatorcontrib>Wang, Hui ; Guo, Chuanhang ; Li, Fabao ; Zeng, Shuai ; Li, Xiangyang ; Fu, Huayu ; Wang, Tao ; Liu, Dan</creatorcontrib><description>Defective interface contact is detrimental to the performance of perovskite solar cells (PSCs), by inducing hysteresis, reducing power conversion efficiency (PCE) and deteriorating operation stability. Interlayer materials are commonly utilized to eliminate interfacial defects; however the design of efficient molecules with superior charge transport and defect passivation capabilities remains a big challenge. Herein, four novel fullerene dimers DC
60
–R1–R2 (R1 = H or Cl, R2 = H or MeO) are synthesized as the interlayers between metal oxides and perovskites. The polar substituents of these fullerene dimers are found to determine the intermolecular interaction between these fullerene molecules, with DC
60
–Cl–MeO showing the greatest intermolecular charge transport and passivation ability due to the strongest push-pull effect of the electron-accepting chloride (–Cl) and electron-donating methoxy (–MeO). The non-encapsulated planar (FAPbI
3
)
x
(MAPbBr
3
)
1−
x
PSC with DC
60
–Cl–MeO as the interlayer delivers a maximum PCE of 23.3% with no hysteresis, maintaining nearly 100% of the initial efficiency after being stored in a high humidity environment over 500 h. The extrapolated
T
S80
lifetime (the time required to reach 80% of initial performance) of the PSC device could be extended to 1110 h at the maximum power point operation condition under one sun illumination without any encapsulation or inert gas protection, superior to the pure SnO
2
-based device (0.5 h). Fullerene derivatives with push-pull substituents are therefore promising candidates as the interfacial materials for PSCs to receive high performance.</description><identifier>ISSN: 2095-8226</identifier><identifier>EISSN: 2199-4501</identifier><identifier>DOI: 10.1007/s40843-023-2675-6</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Charge transport ; Chemistry and Materials Science ; Chemistry/Food Science ; Design defects ; Dimers ; Encapsulation ; Energy conversion efficiency ; Fullerenes ; Hysteresis ; Interface stability ; Interlayers ; Materials Science ; Maximum power ; Metal oxides ; Passivity ; Perovskites ; Photovoltaic cells ; Rare gases ; Solar cells ; Tin dioxide</subject><ispartof>Science China materials, 2024, Vol.67 (1), p.58-66</ispartof><rights>Science China Press 2023</rights><rights>Science China Press 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-e7daeb48665cc8783fba89ec5d68d89915e1493f3c5859f34cc96d012aebb7c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40843-023-2675-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40843-023-2675-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Guo, Chuanhang</creatorcontrib><creatorcontrib>Li, Fabao</creatorcontrib><creatorcontrib>Zeng, Shuai</creatorcontrib><creatorcontrib>Li, Xiangyang</creatorcontrib><creatorcontrib>Fu, Huayu</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Liu, Dan</creatorcontrib><title>Push–pull substituent design of fullerene dimer at the buried interface toward stable and efficient perovskite solar cells</title><title>Science China materials</title><addtitle>Sci. China Mater</addtitle><description>Defective interface contact is detrimental to the performance of perovskite solar cells (PSCs), by inducing hysteresis, reducing power conversion efficiency (PCE) and deteriorating operation stability. Interlayer materials are commonly utilized to eliminate interfacial defects; however the design of efficient molecules with superior charge transport and defect passivation capabilities remains a big challenge. Herein, four novel fullerene dimers DC
60
–R1–R2 (R1 = H or Cl, R2 = H or MeO) are synthesized as the interlayers between metal oxides and perovskites. The polar substituents of these fullerene dimers are found to determine the intermolecular interaction between these fullerene molecules, with DC
60
–Cl–MeO showing the greatest intermolecular charge transport and passivation ability due to the strongest push-pull effect of the electron-accepting chloride (–Cl) and electron-donating methoxy (–MeO). The non-encapsulated planar (FAPbI
3
)
x
(MAPbBr
3
)
1−
x
PSC with DC
60
–Cl–MeO as the interlayer delivers a maximum PCE of 23.3% with no hysteresis, maintaining nearly 100% of the initial efficiency after being stored in a high humidity environment over 500 h. The extrapolated
T
S80
lifetime (the time required to reach 80% of initial performance) of the PSC device could be extended to 1110 h at the maximum power point operation condition under one sun illumination without any encapsulation or inert gas protection, superior to the pure SnO
2
-based device (0.5 h). Fullerene derivatives with push-pull substituents are therefore promising candidates as the interfacial materials for PSCs to receive high performance.</description><subject>Charge transport</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Design defects</subject><subject>Dimers</subject><subject>Encapsulation</subject><subject>Energy conversion efficiency</subject><subject>Fullerenes</subject><subject>Hysteresis</subject><subject>Interface stability</subject><subject>Interlayers</subject><subject>Materials Science</subject><subject>Maximum power</subject><subject>Metal oxides</subject><subject>Passivity</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Rare gases</subject><subject>Solar cells</subject><subject>Tin dioxide</subject><issn>2095-8226</issn><issn>2199-4501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKBDEQRRtRUMb5AHcB1615dNLJUsQXDOhC1yGdVMZoT_eYpBXBhf_gH_olZhjBlasqqHtuwamqI4JPCMbtaWqwbFiNKaupaHktdqoDSpSqG47Jbtmx4rWkVOxX85SeMMZEcEKUPKg-7qb0-P35tZ76HqWpSznkCYaMHKSwHNDokS8niDAAcmEFEZmM8iOgbooBHApDhuiNBZTHNxMdStl0PSAzOATeBxs2bWuI42t6DhlQGnsTkYW-T4fVnjd9gvnvnFUPlxf359f14vbq5vxsUVsqZK6hdQa6RgrBrZWtZL4zUoHlTkgnlSIcSKOYZ5ZLrjxrrFXCYUIL1bWWs1l1vO1dx_FlgpT10zjFobzUVBEhSjNjJUW2KRvHlCJ4vY5hZeK7JlhvPOutZ108641nLQpDt0wq2WEJ8a_5f-gHPkGDuw</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Wang, Hui</creator><creator>Guo, Chuanhang</creator><creator>Li, Fabao</creator><creator>Zeng, Shuai</creator><creator>Li, Xiangyang</creator><creator>Fu, Huayu</creator><creator>Wang, Tao</creator><creator>Liu, Dan</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>Push–pull substituent design of fullerene dimer at the buried interface toward stable and efficient perovskite solar cells</title><author>Wang, Hui ; Guo, Chuanhang ; Li, Fabao ; Zeng, Shuai ; Li, Xiangyang ; Fu, Huayu ; Wang, Tao ; Liu, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-e7daeb48665cc8783fba89ec5d68d89915e1493f3c5859f34cc96d012aebb7c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Charge transport</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Design defects</topic><topic>Dimers</topic><topic>Encapsulation</topic><topic>Energy conversion efficiency</topic><topic>Fullerenes</topic><topic>Hysteresis</topic><topic>Interface stability</topic><topic>Interlayers</topic><topic>Materials Science</topic><topic>Maximum power</topic><topic>Metal oxides</topic><topic>Passivity</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Rare gases</topic><topic>Solar cells</topic><topic>Tin dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Guo, Chuanhang</creatorcontrib><creatorcontrib>Li, Fabao</creatorcontrib><creatorcontrib>Zeng, Shuai</creatorcontrib><creatorcontrib>Li, Xiangyang</creatorcontrib><creatorcontrib>Fu, Huayu</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Liu, Dan</creatorcontrib><collection>CrossRef</collection><jtitle>Science China materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Hui</au><au>Guo, Chuanhang</au><au>Li, Fabao</au><au>Zeng, Shuai</au><au>Li, Xiangyang</au><au>Fu, Huayu</au><au>Wang, Tao</au><au>Liu, Dan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Push–pull substituent design of fullerene dimer at the buried interface toward stable and efficient perovskite solar cells</atitle><jtitle>Science China materials</jtitle><stitle>Sci. China Mater</stitle><date>2024</date><risdate>2024</risdate><volume>67</volume><issue>1</issue><spage>58</spage><epage>66</epage><pages>58-66</pages><issn>2095-8226</issn><eissn>2199-4501</eissn><abstract>Defective interface contact is detrimental to the performance of perovskite solar cells (PSCs), by inducing hysteresis, reducing power conversion efficiency (PCE) and deteriorating operation stability. Interlayer materials are commonly utilized to eliminate interfacial defects; however the design of efficient molecules with superior charge transport and defect passivation capabilities remains a big challenge. Herein, four novel fullerene dimers DC
60
–R1–R2 (R1 = H or Cl, R2 = H or MeO) are synthesized as the interlayers between metal oxides and perovskites. The polar substituents of these fullerene dimers are found to determine the intermolecular interaction between these fullerene molecules, with DC
60
–Cl–MeO showing the greatest intermolecular charge transport and passivation ability due to the strongest push-pull effect of the electron-accepting chloride (–Cl) and electron-donating methoxy (–MeO). The non-encapsulated planar (FAPbI
3
)
x
(MAPbBr
3
)
1−
x
PSC with DC
60
–Cl–MeO as the interlayer delivers a maximum PCE of 23.3% with no hysteresis, maintaining nearly 100% of the initial efficiency after being stored in a high humidity environment over 500 h. The extrapolated
T
S80
lifetime (the time required to reach 80% of initial performance) of the PSC device could be extended to 1110 h at the maximum power point operation condition under one sun illumination without any encapsulation or inert gas protection, superior to the pure SnO
2
-based device (0.5 h). Fullerene derivatives with push-pull substituents are therefore promising candidates as the interfacial materials for PSCs to receive high performance.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s40843-023-2675-6</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2095-8226 |
ispartof | Science China materials, 2024, Vol.67 (1), p.58-66 |
issn | 2095-8226 2199-4501 |
language | eng |
recordid | cdi_proquest_journals_2916686633 |
source | Springer Online Journals Complete; Alma/SFX Local Collection |
subjects | Charge transport Chemistry and Materials Science Chemistry/Food Science Design defects Dimers Encapsulation Energy conversion efficiency Fullerenes Hysteresis Interface stability Interlayers Materials Science Maximum power Metal oxides Passivity Perovskites Photovoltaic cells Rare gases Solar cells Tin dioxide |
title | Push–pull substituent design of fullerene dimer at the buried interface toward stable and efficient perovskite solar cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T02%3A23%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Push%E2%80%93pull%20substituent%20design%20of%20fullerene%20dimer%20at%20the%20buried%20interface%20toward%20stable%20and%20efficient%20perovskite%20solar%20cells&rft.jtitle=Science%20China%20materials&rft.au=Wang,%20Hui&rft.date=2024&rft.volume=67&rft.issue=1&rft.spage=58&rft.epage=66&rft.pages=58-66&rft.issn=2095-8226&rft.eissn=2199-4501&rft_id=info:doi/10.1007/s40843-023-2675-6&rft_dat=%3Cproquest_cross%3E2916686633%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2916686633&rft_id=info:pmid/&rfr_iscdi=true |