Hidden Symmetries, First Integrals and Reduction of Order of Nonlinear Ordinary Differential Equations

The reduction of nonlinear ordinary differential equations by a combination of first integrals and Lie group symmetries is investigated. The retention, loss or even gain in symmetries in the integration of a nonlinear ordinary differential equation to a first integral are studied for several example...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nonlinear mathematical physics 2002, Vol.9, p.1-9
1. Verfasser: Abraham-Shrauner, Barbara
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue
container_start_page 1
container_title Journal of nonlinear mathematical physics
container_volume 9
creator Abraham-Shrauner, Barbara
description The reduction of nonlinear ordinary differential equations by a combination of first integrals and Lie group symmetries is investigated. The retention, loss or even gain in symmetries in the integration of a nonlinear ordinary differential equation to a first integral are studied for several examples. The differential equations and first integrals are expressed in terms of the invariants of Lie group symmetries. The first integral is treated as a differential equation where the special case of the first integral equal to zero is examined in addition to the nonzero first integral. The inverse problem for which the first integral is the fundamental quantity enables some predictions of the change in Lie group symmetries when the differential equation is integrated. New types of hidden symmetries are introduced.
doi_str_mv 10.2991/jnmp.2002.9.s2.1
format Article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_2916541397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2916541397</sourcerecordid><originalsourceid>FETCH-LOGICAL-i235t-9892fec9ff4fb7c13609e18006ffcb64c4a2a9760359f9543f2904aa943100533</originalsourceid><addsrcrecordid>eNotkEtLAzEURoMoWKt7lwG3zpjXPC6upLa2UCz4WId0JpGUmaRNUqT_3hnq6n5cvnsuHITuKckZAH3auX6fM0JYDnlkOb1AE1pVZUbqgl0OWRCWASvoNbqJcUcIr8q6niCztG2rHf489b1Ower4iBc2xIRXLumfoLqIlWvxh26PTbLeYW_wJrQ6jOHdu846rcK4sk6FE361xuigXbKqw_PDUY1H8RZdmQGl7_7nFH0v5l-zZbbevK1mL-vMMl6kDGpgRjdgjDDbqqG8JKBpTUhpTLMtRSMUU1CVhBdgoBDcMCBCKRCcElJwPkUPZ-4--MNRxyR3_hjc8FIyoGUhKIdqaD2fW9YZH3r160PXyqROnQ8mKNfYKAegHMXKUawcxUqQkUnK_wA3_233</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2916541397</pqid></control><display><type>article</type><title>Hidden Symmetries, First Integrals and Reduction of Order of Nonlinear Ordinary Differential Equations</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SpringerLink Journals - AutoHoldings</source><creator>Abraham-Shrauner, Barbara</creator><creatorcontrib>Abraham-Shrauner, Barbara</creatorcontrib><description>The reduction of nonlinear ordinary differential equations by a combination of first integrals and Lie group symmetries is investigated. The retention, loss or even gain in symmetries in the integration of a nonlinear ordinary differential equation to a first integral are studied for several examples. The differential equations and first integrals are expressed in terms of the invariants of Lie group symmetries. The first integral is treated as a differential equation where the special case of the first integral equal to zero is examined in addition to the nonzero first integral. The inverse problem for which the first integral is the fundamental quantity enables some predictions of the change in Lie group symmetries when the differential equation is integrated. New types of hidden symmetries are introduced.</description><identifier>ISSN: 1402-9251</identifier><identifier>EISSN: 1776-0852</identifier><identifier>DOI: 10.2991/jnmp.2002.9.s2.1</identifier><language>eng</language><publisher>Singapore: Taylor &amp; Francis Group</publisher><subject>Integrals ; Inverse problems ; Lie groups ; Mathematical analysis ; Nonlinear differential equations ; Reduction</subject><ispartof>Journal of nonlinear mathematical physics, 2002, Vol.9, p.1-9</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2002</rights><rights>B Abraham-Shrauner 2002. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27902,27903,27904</link.rule.ids></links><search><creatorcontrib>Abraham-Shrauner, Barbara</creatorcontrib><title>Hidden Symmetries, First Integrals and Reduction of Order of Nonlinear Ordinary Differential Equations</title><title>Journal of nonlinear mathematical physics</title><description>The reduction of nonlinear ordinary differential equations by a combination of first integrals and Lie group symmetries is investigated. The retention, loss or even gain in symmetries in the integration of a nonlinear ordinary differential equation to a first integral are studied for several examples. The differential equations and first integrals are expressed in terms of the invariants of Lie group symmetries. The first integral is treated as a differential equation where the special case of the first integral equal to zero is examined in addition to the nonzero first integral. The inverse problem for which the first integral is the fundamental quantity enables some predictions of the change in Lie group symmetries when the differential equation is integrated. New types of hidden symmetries are introduced.</description><subject>Integrals</subject><subject>Inverse problems</subject><subject>Lie groups</subject><subject>Mathematical analysis</subject><subject>Nonlinear differential equations</subject><subject>Reduction</subject><issn>1402-9251</issn><issn>1776-0852</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNotkEtLAzEURoMoWKt7lwG3zpjXPC6upLa2UCz4WId0JpGUmaRNUqT_3hnq6n5cvnsuHITuKckZAH3auX6fM0JYDnlkOb1AE1pVZUbqgl0OWRCWASvoNbqJcUcIr8q6niCztG2rHf489b1Ower4iBc2xIRXLumfoLqIlWvxh26PTbLeYW_wJrQ6jOHdu846rcK4sk6FE361xuigXbKqw_PDUY1H8RZdmQGl7_7nFH0v5l-zZbbevK1mL-vMMl6kDGpgRjdgjDDbqqG8JKBpTUhpTLMtRSMUU1CVhBdgoBDcMCBCKRCcElJwPkUPZ-4--MNRxyR3_hjc8FIyoGUhKIdqaD2fW9YZH3r160PXyqROnQ8mKNfYKAegHMXKUawcxUqQkUnK_wA3_233</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Abraham-Shrauner, Barbara</creator><general>Taylor &amp; Francis Group</general><general>Springer Nature B.V</general><scope>JQ2</scope></search><sort><creationdate>2002</creationdate><title>Hidden Symmetries, First Integrals and Reduction of Order of Nonlinear Ordinary Differential Equations</title><author>Abraham-Shrauner, Barbara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i235t-9892fec9ff4fb7c13609e18006ffcb64c4a2a9760359f9543f2904aa943100533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Integrals</topic><topic>Inverse problems</topic><topic>Lie groups</topic><topic>Mathematical analysis</topic><topic>Nonlinear differential equations</topic><topic>Reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abraham-Shrauner, Barbara</creatorcontrib><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of nonlinear mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abraham-Shrauner, Barbara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hidden Symmetries, First Integrals and Reduction of Order of Nonlinear Ordinary Differential Equations</atitle><jtitle>Journal of nonlinear mathematical physics</jtitle><date>2002</date><risdate>2002</risdate><volume>9</volume><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1402-9251</issn><eissn>1776-0852</eissn><abstract>The reduction of nonlinear ordinary differential equations by a combination of first integrals and Lie group symmetries is investigated. The retention, loss or even gain in symmetries in the integration of a nonlinear ordinary differential equation to a first integral are studied for several examples. The differential equations and first integrals are expressed in terms of the invariants of Lie group symmetries. The first integral is treated as a differential equation where the special case of the first integral equal to zero is examined in addition to the nonzero first integral. The inverse problem for which the first integral is the fundamental quantity enables some predictions of the change in Lie group symmetries when the differential equation is integrated. New types of hidden symmetries are introduced.</abstract><cop>Singapore</cop><pub>Taylor &amp; Francis Group</pub><doi>10.2991/jnmp.2002.9.s2.1</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1402-9251
ispartof Journal of nonlinear mathematical physics, 2002, Vol.9, p.1-9
issn 1402-9251
1776-0852
language eng
recordid cdi_proquest_journals_2916541397
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SpringerLink Journals - AutoHoldings
subjects Integrals
Inverse problems
Lie groups
Mathematical analysis
Nonlinear differential equations
Reduction
title Hidden Symmetries, First Integrals and Reduction of Order of Nonlinear Ordinary Differential Equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A10%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hidden%20Symmetries,%20First%20Integrals%20and%20Reduction%20of%20Order%20of%20Nonlinear%20Ordinary%20Differential%20Equations&rft.jtitle=Journal%20of%20nonlinear%20mathematical%20physics&rft.au=Abraham-Shrauner,%20Barbara&rft.date=2002&rft.volume=9&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1402-9251&rft.eissn=1776-0852&rft_id=info:doi/10.2991/jnmp.2002.9.s2.1&rft_dat=%3Cproquest_infor%3E2916541397%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2916541397&rft_id=info:pmid/&rfr_iscdi=true