Hidden Symmetries, First Integrals and Reduction of Order of Nonlinear Ordinary Differential Equations
The reduction of nonlinear ordinary differential equations by a combination of first integrals and Lie group symmetries is investigated. The retention, loss or even gain in symmetries in the integration of a nonlinear ordinary differential equation to a first integral are studied for several example...
Gespeichert in:
Veröffentlicht in: | Journal of nonlinear mathematical physics 2002, Vol.9, p.1-9 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Journal of nonlinear mathematical physics |
container_volume | 9 |
creator | Abraham-Shrauner, Barbara |
description | The reduction of nonlinear ordinary differential equations by a combination of first integrals and Lie group symmetries is investigated. The retention, loss or even gain in symmetries in the integration of a nonlinear ordinary differential equation to a first integral are studied for several examples. The differential equations and first integrals are expressed in terms of the invariants of Lie group symmetries. The first integral is treated as a differential equation where the special case of the first integral equal to zero is examined in addition to the nonzero first integral. The inverse problem for which the first integral is the fundamental quantity enables some predictions of the change in Lie group symmetries when the differential equation is integrated. New types of hidden symmetries are introduced. |
doi_str_mv | 10.2991/jnmp.2002.9.s2.1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_2916541397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2916541397</sourcerecordid><originalsourceid>FETCH-LOGICAL-i235t-9892fec9ff4fb7c13609e18006ffcb64c4a2a9760359f9543f2904aa943100533</originalsourceid><addsrcrecordid>eNotkEtLAzEURoMoWKt7lwG3zpjXPC6upLa2UCz4WId0JpGUmaRNUqT_3hnq6n5cvnsuHITuKckZAH3auX6fM0JYDnlkOb1AE1pVZUbqgl0OWRCWASvoNbqJcUcIr8q6niCztG2rHf489b1Ower4iBc2xIRXLumfoLqIlWvxh26PTbLeYW_wJrQ6jOHdu846rcK4sk6FE361xuigXbKqw_PDUY1H8RZdmQGl7_7nFH0v5l-zZbbevK1mL-vMMl6kDGpgRjdgjDDbqqG8JKBpTUhpTLMtRSMUU1CVhBdgoBDcMCBCKRCcElJwPkUPZ-4--MNRxyR3_hjc8FIyoGUhKIdqaD2fW9YZH3r160PXyqROnQ8mKNfYKAegHMXKUawcxUqQkUnK_wA3_233</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2916541397</pqid></control><display><type>article</type><title>Hidden Symmetries, First Integrals and Reduction of Order of Nonlinear Ordinary Differential Equations</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SpringerLink Journals - AutoHoldings</source><creator>Abraham-Shrauner, Barbara</creator><creatorcontrib>Abraham-Shrauner, Barbara</creatorcontrib><description>The reduction of nonlinear ordinary differential equations by a combination of first integrals and Lie group symmetries is investigated. The retention, loss or even gain in symmetries in the integration of a nonlinear ordinary differential equation to a first integral are studied for several examples. The differential equations and first integrals are expressed in terms of the invariants of Lie group symmetries. The first integral is treated as a differential equation where the special case of the first integral equal to zero is examined in addition to the nonzero first integral. The inverse problem for which the first integral is the fundamental quantity enables some predictions of the change in Lie group symmetries when the differential equation is integrated. New types of hidden symmetries are introduced.</description><identifier>ISSN: 1402-9251</identifier><identifier>EISSN: 1776-0852</identifier><identifier>DOI: 10.2991/jnmp.2002.9.s2.1</identifier><language>eng</language><publisher>Singapore: Taylor & Francis Group</publisher><subject>Integrals ; Inverse problems ; Lie groups ; Mathematical analysis ; Nonlinear differential equations ; Reduction</subject><ispartof>Journal of nonlinear mathematical physics, 2002, Vol.9, p.1-9</ispartof><rights>Copyright Taylor & Francis Group, LLC 2002</rights><rights>B Abraham-Shrauner 2002. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27902,27903,27904</link.rule.ids></links><search><creatorcontrib>Abraham-Shrauner, Barbara</creatorcontrib><title>Hidden Symmetries, First Integrals and Reduction of Order of Nonlinear Ordinary Differential Equations</title><title>Journal of nonlinear mathematical physics</title><description>The reduction of nonlinear ordinary differential equations by a combination of first integrals and Lie group symmetries is investigated. The retention, loss or even gain in symmetries in the integration of a nonlinear ordinary differential equation to a first integral are studied for several examples. The differential equations and first integrals are expressed in terms of the invariants of Lie group symmetries. The first integral is treated as a differential equation where the special case of the first integral equal to zero is examined in addition to the nonzero first integral. The inverse problem for which the first integral is the fundamental quantity enables some predictions of the change in Lie group symmetries when the differential equation is integrated. New types of hidden symmetries are introduced.</description><subject>Integrals</subject><subject>Inverse problems</subject><subject>Lie groups</subject><subject>Mathematical analysis</subject><subject>Nonlinear differential equations</subject><subject>Reduction</subject><issn>1402-9251</issn><issn>1776-0852</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNotkEtLAzEURoMoWKt7lwG3zpjXPC6upLa2UCz4WId0JpGUmaRNUqT_3hnq6n5cvnsuHITuKckZAH3auX6fM0JYDnlkOb1AE1pVZUbqgl0OWRCWASvoNbqJcUcIr8q6niCztG2rHf489b1Ower4iBc2xIRXLumfoLqIlWvxh26PTbLeYW_wJrQ6jOHdu846rcK4sk6FE361xuigXbKqw_PDUY1H8RZdmQGl7_7nFH0v5l-zZbbevK1mL-vMMl6kDGpgRjdgjDDbqqG8JKBpTUhpTLMtRSMUU1CVhBdgoBDcMCBCKRCcElJwPkUPZ-4--MNRxyR3_hjc8FIyoGUhKIdqaD2fW9YZH3r160PXyqROnQ8mKNfYKAegHMXKUawcxUqQkUnK_wA3_233</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Abraham-Shrauner, Barbara</creator><general>Taylor & Francis Group</general><general>Springer Nature B.V</general><scope>JQ2</scope></search><sort><creationdate>2002</creationdate><title>Hidden Symmetries, First Integrals and Reduction of Order of Nonlinear Ordinary Differential Equations</title><author>Abraham-Shrauner, Barbara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i235t-9892fec9ff4fb7c13609e18006ffcb64c4a2a9760359f9543f2904aa943100533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Integrals</topic><topic>Inverse problems</topic><topic>Lie groups</topic><topic>Mathematical analysis</topic><topic>Nonlinear differential equations</topic><topic>Reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abraham-Shrauner, Barbara</creatorcontrib><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of nonlinear mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abraham-Shrauner, Barbara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hidden Symmetries, First Integrals and Reduction of Order of Nonlinear Ordinary Differential Equations</atitle><jtitle>Journal of nonlinear mathematical physics</jtitle><date>2002</date><risdate>2002</risdate><volume>9</volume><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1402-9251</issn><eissn>1776-0852</eissn><abstract>The reduction of nonlinear ordinary differential equations by a combination of first integrals and Lie group symmetries is investigated. The retention, loss or even gain in symmetries in the integration of a nonlinear ordinary differential equation to a first integral are studied for several examples. The differential equations and first integrals are expressed in terms of the invariants of Lie group symmetries. The first integral is treated as a differential equation where the special case of the first integral equal to zero is examined in addition to the nonzero first integral. The inverse problem for which the first integral is the fundamental quantity enables some predictions of the change in Lie group symmetries when the differential equation is integrated. New types of hidden symmetries are introduced.</abstract><cop>Singapore</cop><pub>Taylor & Francis Group</pub><doi>10.2991/jnmp.2002.9.s2.1</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1402-9251 |
ispartof | Journal of nonlinear mathematical physics, 2002, Vol.9, p.1-9 |
issn | 1402-9251 1776-0852 |
language | eng |
recordid | cdi_proquest_journals_2916541397 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SpringerLink Journals - AutoHoldings |
subjects | Integrals Inverse problems Lie groups Mathematical analysis Nonlinear differential equations Reduction |
title | Hidden Symmetries, First Integrals and Reduction of Order of Nonlinear Ordinary Differential Equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A10%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hidden%20Symmetries,%20First%20Integrals%20and%20Reduction%20of%20Order%20of%20Nonlinear%20Ordinary%20Differential%20Equations&rft.jtitle=Journal%20of%20nonlinear%20mathematical%20physics&rft.au=Abraham-Shrauner,%20Barbara&rft.date=2002&rft.volume=9&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1402-9251&rft.eissn=1776-0852&rft_id=info:doi/10.2991/jnmp.2002.9.s2.1&rft_dat=%3Cproquest_infor%3E2916541397%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2916541397&rft_id=info:pmid/&rfr_iscdi=true |