Tiny Multi-Agent DRL for Twins Migration in UAV Metaverses: A Multi-Leader Multi-Follower Stackelberg Game Approach
The synergy between Unmanned Aerial Vehicles (UAVs) and metaverses is giving rise to an emerging paradigm named UAV metaverses, which create a unified ecosystem that blends physical and virtual spaces, transforming drone interaction and virtual exploration. UAV Twins (UTs), as the digital twins of U...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-04 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Kang, Jiawen Zhong, Yue Xu, Minrui Nie, Jiangtian Wen, Jinbo Du, Hongyang Ye, Dongdong Huang, Xumin Niyato, Dusit Xie, Shengli |
description | The synergy between Unmanned Aerial Vehicles (UAVs) and metaverses is giving rise to an emerging paradigm named UAV metaverses, which create a unified ecosystem that blends physical and virtual spaces, transforming drone interaction and virtual exploration. UAV Twins (UTs), as the digital twins of UAVs that revolutionize UAV applications by making them more immersive, realistic, and informative, are deployed and updated on ground base stations, e.g., RoadSide Units (RSUs), to offer metaverse services for UAV Metaverse Users (UMUs). Due to the dynamic mobility of UAVs and limited communication coverages of RSUs, it is essential to perform real-time UT migration to ensure seamless immersive experiences for UMUs. However, selecting appropriate RSUs and optimizing the required bandwidth is challenging for achieving reliable and efficient UT migration. To address the challenges, we propose a tiny machine learning-based Stackelberg game framework based on pruning techniques for efficient UT migration in UAV metaverses. Specifically, we formulate a multi-leader multi-follower Stackelberg model considering a new immersion metric of UMUs in the utilities of UAVs. Then, we design a Tiny Multi-Agent Deep Reinforcement Learning (Tiny MADRL) algorithm to obtain the tiny networks representing the optimal game solution. Specifically, the actor-critic network leverages the pruning techniques to reduce the number of network parameters and achieve model size and computation reduction, allowing for efficient implementation of Tiny MADRL. Numerical results demonstrate that our proposed schemes have better performance than traditional schemes. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2916500139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2916500139</sourcerecordid><originalsourceid>FETCH-proquest_journals_29165001393</originalsourceid><addsrcrecordid>eNqNi8sKwjAUBYMgKNp_uOC6kCbW1674XNiNVrcS622NxkSTVPHv7aIf4OowzJwW6TLOo3AyZKxDAudulFI2GrM45l3iMqm_kFbKyzApUXtY7LZQGAvZR2oHqSyt8NJokBoOyRFS9OKN1qGbQdIctyguaBtYGaXMp8a9F_kd1RltCWvxQEieT2tEfu2TdiGUw6DZHhmsltl8E9b6VaHzp5uprK7ViU2jUUxpxKf8v-oHq4JKJg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2916500139</pqid></control><display><type>article</type><title>Tiny Multi-Agent DRL for Twins Migration in UAV Metaverses: A Multi-Leader Multi-Follower Stackelberg Game Approach</title><source>Free E- Journals</source><creator>Kang, Jiawen ; Zhong, Yue ; Xu, Minrui ; Nie, Jiangtian ; Wen, Jinbo ; Du, Hongyang ; Ye, Dongdong ; Huang, Xumin ; Niyato, Dusit ; Xie, Shengli</creator><creatorcontrib>Kang, Jiawen ; Zhong, Yue ; Xu, Minrui ; Nie, Jiangtian ; Wen, Jinbo ; Du, Hongyang ; Ye, Dongdong ; Huang, Xumin ; Niyato, Dusit ; Xie, Shengli</creatorcontrib><description>The synergy between Unmanned Aerial Vehicles (UAVs) and metaverses is giving rise to an emerging paradigm named UAV metaverses, which create a unified ecosystem that blends physical and virtual spaces, transforming drone interaction and virtual exploration. UAV Twins (UTs), as the digital twins of UAVs that revolutionize UAV applications by making them more immersive, realistic, and informative, are deployed and updated on ground base stations, e.g., RoadSide Units (RSUs), to offer metaverse services for UAV Metaverse Users (UMUs). Due to the dynamic mobility of UAVs and limited communication coverages of RSUs, it is essential to perform real-time UT migration to ensure seamless immersive experiences for UMUs. However, selecting appropriate RSUs and optimizing the required bandwidth is challenging for achieving reliable and efficient UT migration. To address the challenges, we propose a tiny machine learning-based Stackelberg game framework based on pruning techniques for efficient UT migration in UAV metaverses. Specifically, we formulate a multi-leader multi-follower Stackelberg model considering a new immersion metric of UMUs in the utilities of UAVs. Then, we design a Tiny Multi-Agent Deep Reinforcement Learning (Tiny MADRL) algorithm to obtain the tiny networks representing the optimal game solution. Specifically, the actor-critic network leverages the pruning techniques to reduce the number of network parameters and achieve model size and computation reduction, allowing for efficient implementation of Tiny MADRL. Numerical results demonstrate that our proposed schemes have better performance than traditional schemes.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Deep learning ; Digital twins ; Game theory ; Games ; Ground stations ; Machine learning ; Multiagent systems ; Optimization ; Roadsides ; Unmanned aerial vehicles</subject><ispartof>arXiv.org, 2024-04</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Kang, Jiawen</creatorcontrib><creatorcontrib>Zhong, Yue</creatorcontrib><creatorcontrib>Xu, Minrui</creatorcontrib><creatorcontrib>Nie, Jiangtian</creatorcontrib><creatorcontrib>Wen, Jinbo</creatorcontrib><creatorcontrib>Du, Hongyang</creatorcontrib><creatorcontrib>Ye, Dongdong</creatorcontrib><creatorcontrib>Huang, Xumin</creatorcontrib><creatorcontrib>Niyato, Dusit</creatorcontrib><creatorcontrib>Xie, Shengli</creatorcontrib><title>Tiny Multi-Agent DRL for Twins Migration in UAV Metaverses: A Multi-Leader Multi-Follower Stackelberg Game Approach</title><title>arXiv.org</title><description>The synergy between Unmanned Aerial Vehicles (UAVs) and metaverses is giving rise to an emerging paradigm named UAV metaverses, which create a unified ecosystem that blends physical and virtual spaces, transforming drone interaction and virtual exploration. UAV Twins (UTs), as the digital twins of UAVs that revolutionize UAV applications by making them more immersive, realistic, and informative, are deployed and updated on ground base stations, e.g., RoadSide Units (RSUs), to offer metaverse services for UAV Metaverse Users (UMUs). Due to the dynamic mobility of UAVs and limited communication coverages of RSUs, it is essential to perform real-time UT migration to ensure seamless immersive experiences for UMUs. However, selecting appropriate RSUs and optimizing the required bandwidth is challenging for achieving reliable and efficient UT migration. To address the challenges, we propose a tiny machine learning-based Stackelberg game framework based on pruning techniques for efficient UT migration in UAV metaverses. Specifically, we formulate a multi-leader multi-follower Stackelberg model considering a new immersion metric of UMUs in the utilities of UAVs. Then, we design a Tiny Multi-Agent Deep Reinforcement Learning (Tiny MADRL) algorithm to obtain the tiny networks representing the optimal game solution. Specifically, the actor-critic network leverages the pruning techniques to reduce the number of network parameters and achieve model size and computation reduction, allowing for efficient implementation of Tiny MADRL. Numerical results demonstrate that our proposed schemes have better performance than traditional schemes.</description><subject>Algorithms</subject><subject>Deep learning</subject><subject>Digital twins</subject><subject>Game theory</subject><subject>Games</subject><subject>Ground stations</subject><subject>Machine learning</subject><subject>Multiagent systems</subject><subject>Optimization</subject><subject>Roadsides</subject><subject>Unmanned aerial vehicles</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNi8sKwjAUBYMgKNp_uOC6kCbW1674XNiNVrcS622NxkSTVPHv7aIf4OowzJwW6TLOo3AyZKxDAudulFI2GrM45l3iMqm_kFbKyzApUXtY7LZQGAvZR2oHqSyt8NJokBoOyRFS9OKN1qGbQdIctyguaBtYGaXMp8a9F_kd1RltCWvxQEieT2tEfu2TdiGUw6DZHhmsltl8E9b6VaHzp5uprK7ViU2jUUxpxKf8v-oHq4JKJg</recordid><startdate>20240408</startdate><enddate>20240408</enddate><creator>Kang, Jiawen</creator><creator>Zhong, Yue</creator><creator>Xu, Minrui</creator><creator>Nie, Jiangtian</creator><creator>Wen, Jinbo</creator><creator>Du, Hongyang</creator><creator>Ye, Dongdong</creator><creator>Huang, Xumin</creator><creator>Niyato, Dusit</creator><creator>Xie, Shengli</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240408</creationdate><title>Tiny Multi-Agent DRL for Twins Migration in UAV Metaverses: A Multi-Leader Multi-Follower Stackelberg Game Approach</title><author>Kang, Jiawen ; Zhong, Yue ; Xu, Minrui ; Nie, Jiangtian ; Wen, Jinbo ; Du, Hongyang ; Ye, Dongdong ; Huang, Xumin ; Niyato, Dusit ; Xie, Shengli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29165001393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Deep learning</topic><topic>Digital twins</topic><topic>Game theory</topic><topic>Games</topic><topic>Ground stations</topic><topic>Machine learning</topic><topic>Multiagent systems</topic><topic>Optimization</topic><topic>Roadsides</topic><topic>Unmanned aerial vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Kang, Jiawen</creatorcontrib><creatorcontrib>Zhong, Yue</creatorcontrib><creatorcontrib>Xu, Minrui</creatorcontrib><creatorcontrib>Nie, Jiangtian</creatorcontrib><creatorcontrib>Wen, Jinbo</creatorcontrib><creatorcontrib>Du, Hongyang</creatorcontrib><creatorcontrib>Ye, Dongdong</creatorcontrib><creatorcontrib>Huang, Xumin</creatorcontrib><creatorcontrib>Niyato, Dusit</creatorcontrib><creatorcontrib>Xie, Shengli</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Jiawen</au><au>Zhong, Yue</au><au>Xu, Minrui</au><au>Nie, Jiangtian</au><au>Wen, Jinbo</au><au>Du, Hongyang</au><au>Ye, Dongdong</au><au>Huang, Xumin</au><au>Niyato, Dusit</au><au>Xie, Shengli</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Tiny Multi-Agent DRL for Twins Migration in UAV Metaverses: A Multi-Leader Multi-Follower Stackelberg Game Approach</atitle><jtitle>arXiv.org</jtitle><date>2024-04-08</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The synergy between Unmanned Aerial Vehicles (UAVs) and metaverses is giving rise to an emerging paradigm named UAV metaverses, which create a unified ecosystem that blends physical and virtual spaces, transforming drone interaction and virtual exploration. UAV Twins (UTs), as the digital twins of UAVs that revolutionize UAV applications by making them more immersive, realistic, and informative, are deployed and updated on ground base stations, e.g., RoadSide Units (RSUs), to offer metaverse services for UAV Metaverse Users (UMUs). Due to the dynamic mobility of UAVs and limited communication coverages of RSUs, it is essential to perform real-time UT migration to ensure seamless immersive experiences for UMUs. However, selecting appropriate RSUs and optimizing the required bandwidth is challenging for achieving reliable and efficient UT migration. To address the challenges, we propose a tiny machine learning-based Stackelberg game framework based on pruning techniques for efficient UT migration in UAV metaverses. Specifically, we formulate a multi-leader multi-follower Stackelberg model considering a new immersion metric of UMUs in the utilities of UAVs. Then, we design a Tiny Multi-Agent Deep Reinforcement Learning (Tiny MADRL) algorithm to obtain the tiny networks representing the optimal game solution. Specifically, the actor-critic network leverages the pruning techniques to reduce the number of network parameters and achieve model size and computation reduction, allowing for efficient implementation of Tiny MADRL. Numerical results demonstrate that our proposed schemes have better performance than traditional schemes.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2916500139 |
source | Free E- Journals |
subjects | Algorithms Deep learning Digital twins Game theory Games Ground stations Machine learning Multiagent systems Optimization Roadsides Unmanned aerial vehicles |
title | Tiny Multi-Agent DRL for Twins Migration in UAV Metaverses: A Multi-Leader Multi-Follower Stackelberg Game Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T23%3A41%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Tiny%20Multi-Agent%20DRL%20for%20Twins%20Migration%20in%20UAV%20Metaverses:%20A%20Multi-Leader%20Multi-Follower%20Stackelberg%20Game%20Approach&rft.jtitle=arXiv.org&rft.au=Kang,%20Jiawen&rft.date=2024-04-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2916500139%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2916500139&rft_id=info:pmid/&rfr_iscdi=true |