Simulation and Process Analysis of DLP 3D Printing with High-strength Resin
By utilizing digital light processing (DLP) printing equipment and technology, this study investigates the temperature field, stress changes, and the impact of various process parameters on the formation and strength characteristics of high-strength resin during the printing process. Abaqus birth-de...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2024-01, Vol.2671 (1), p.12002 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12002 |
container_title | Journal of physics. Conference series |
container_volume | 2671 |
creator | Sang, Jian Zhao, Xinxin Jiang, Kai Zhao, Qiancheng Wei, Chaofei Li, Ming Hu, Leijun Jin, Changxin |
description | By utilizing digital light processing (DLP) printing equipment and technology, this study investigates the temperature field, stress changes, and the impact of various process parameters on the formation and strength characteristics of high-strength resin during the printing process. Abaqus birth-death element method simulation and related process tests are employed for this purpose. The simulation results demonstrate a gradual decrease in the temperature field through wavy diffusion from the center to the boundary during printing. The node temperature, displacement, and stress curves are observed to fluctuate frequently due to the subsequent printing layers, with the maximum stress point located close to the printing platform. The experimental results reveal that the test parameters possess different effects on the surface quality and tensile strength. Inappropriate parameters tend to result in surface defects. The influencing factors on the tensile strength of the sample are ranked in the following order: layer thickness, exposure time, and exposure light intensity. The molded resin sample achieves a tensile strength of 58.5MPa, which is comparable to the tensile properties of traditionally injection-molded parts. |
doi_str_mv | 10.1088/1742-6596/2671/1/012002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2916439675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2916439675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2742-97458734b16d111a086b1bb931abf5db15c6a9b0557393c2024d0467264b90003</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKe_wYB3wmxO0ibN5ZgfUwcOp9ch6ceWsbU16ZD9e1MqE0EwN0k4zznn5UHoEsgNkDSNQMR0xBPJI8oFRBARoITQIzQ4VI4P7zQ9RWferwlh4YgBel7Y7W6jW1tXWFc5nrs6K7zH40pv9t56XJf4djbH7DaUbNXaaok_bbvCU7tcjXzrimoZfq-Ft9U5Oin1xhcX3_cQvd_fvU2mo9nLw-NkPBtltEshRZykgsUGeA4AmqTcgDGSgTZlkhtIMq6lIUkimGQZJTTOScwF5bGRJCQfoqt-buPqj13hW7Wudy4E9opK4DGTXCSBEj2Vudp7V5SqcXar3V4BUZ051TlRnR_VmVOgenOh87rvtHXzM_ppPln8BlWTlwFmf8D_rfgC9Pp6fw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2916439675</pqid></control><display><type>article</type><title>Simulation and Process Analysis of DLP 3D Printing with High-strength Resin</title><source>Institute of Physics Open Access Journal Titles</source><source>Institute of Physics IOPscience extra</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Sang, Jian ; Zhao, Xinxin ; Jiang, Kai ; Zhao, Qiancheng ; Wei, Chaofei ; Li, Ming ; Hu, Leijun ; Jin, Changxin</creator><creatorcontrib>Sang, Jian ; Zhao, Xinxin ; Jiang, Kai ; Zhao, Qiancheng ; Wei, Chaofei ; Li, Ming ; Hu, Leijun ; Jin, Changxin</creatorcontrib><description>By utilizing digital light processing (DLP) printing equipment and technology, this study investigates the temperature field, stress changes, and the impact of various process parameters on the formation and strength characteristics of high-strength resin during the printing process. Abaqus birth-death element method simulation and related process tests are employed for this purpose. The simulation results demonstrate a gradual decrease in the temperature field through wavy diffusion from the center to the boundary during printing. The node temperature, displacement, and stress curves are observed to fluctuate frequently due to the subsequent printing layers, with the maximum stress point located close to the printing platform. The experimental results reveal that the test parameters possess different effects on the surface quality and tensile strength. Inappropriate parameters tend to result in surface defects. The influencing factors on the tensile strength of the sample are ranked in the following order: layer thickness, exposure time, and exposure light intensity. The molded resin sample achieves a tensile strength of 58.5MPa, which is comparable to the tensile properties of traditionally injection-molded parts.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/2671/1/012002</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>3D printing ; Digital light processing (DLP) ; Finite element method ; High strength ; Injection molding ; Luminous intensity ; Mechanical properties ; Physics ; Process parameters ; Resins ; Simulation ; Surface defects ; Surface properties ; Temperature distribution ; Tensile properties ; Tensile strength ; Thickness ; Three dimensional printing</subject><ispartof>Journal of physics. Conference series, 2024-01, Vol.2671 (1), p.12002</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2742-97458734b16d111a086b1bb931abf5db15c6a9b0557393c2024d0467264b90003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/2671/1/012002/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Sang, Jian</creatorcontrib><creatorcontrib>Zhao, Xinxin</creatorcontrib><creatorcontrib>Jiang, Kai</creatorcontrib><creatorcontrib>Zhao, Qiancheng</creatorcontrib><creatorcontrib>Wei, Chaofei</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Hu, Leijun</creatorcontrib><creatorcontrib>Jin, Changxin</creatorcontrib><title>Simulation and Process Analysis of DLP 3D Printing with High-strength Resin</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>By utilizing digital light processing (DLP) printing equipment and technology, this study investigates the temperature field, stress changes, and the impact of various process parameters on the formation and strength characteristics of high-strength resin during the printing process. Abaqus birth-death element method simulation and related process tests are employed for this purpose. The simulation results demonstrate a gradual decrease in the temperature field through wavy diffusion from the center to the boundary during printing. The node temperature, displacement, and stress curves are observed to fluctuate frequently due to the subsequent printing layers, with the maximum stress point located close to the printing platform. The experimental results reveal that the test parameters possess different effects on the surface quality and tensile strength. Inappropriate parameters tend to result in surface defects. The influencing factors on the tensile strength of the sample are ranked in the following order: layer thickness, exposure time, and exposure light intensity. The molded resin sample achieves a tensile strength of 58.5MPa, which is comparable to the tensile properties of traditionally injection-molded parts.</description><subject>3D printing</subject><subject>Digital light processing (DLP)</subject><subject>Finite element method</subject><subject>High strength</subject><subject>Injection molding</subject><subject>Luminous intensity</subject><subject>Mechanical properties</subject><subject>Physics</subject><subject>Process parameters</subject><subject>Resins</subject><subject>Simulation</subject><subject>Surface defects</subject><subject>Surface properties</subject><subject>Temperature distribution</subject><subject>Tensile properties</subject><subject>Tensile strength</subject><subject>Thickness</subject><subject>Three dimensional printing</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkF1LwzAUhoMoOKe_wYB3wmxO0ibN5ZgfUwcOp9ch6ceWsbU16ZD9e1MqE0EwN0k4zznn5UHoEsgNkDSNQMR0xBPJI8oFRBARoITQIzQ4VI4P7zQ9RWferwlh4YgBel7Y7W6jW1tXWFc5nrs6K7zH40pv9t56XJf4djbH7DaUbNXaaok_bbvCU7tcjXzrimoZfq-Ft9U5Oin1xhcX3_cQvd_fvU2mo9nLw-NkPBtltEshRZykgsUGeA4AmqTcgDGSgTZlkhtIMq6lIUkimGQZJTTOScwF5bGRJCQfoqt-buPqj13hW7Wudy4E9opK4DGTXCSBEj2Vudp7V5SqcXar3V4BUZ051TlRnR_VmVOgenOh87rvtHXzM_ppPln8BlWTlwFmf8D_rfgC9Pp6fw</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Sang, Jian</creator><creator>Zhao, Xinxin</creator><creator>Jiang, Kai</creator><creator>Zhao, Qiancheng</creator><creator>Wei, Chaofei</creator><creator>Li, Ming</creator><creator>Hu, Leijun</creator><creator>Jin, Changxin</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20240101</creationdate><title>Simulation and Process Analysis of DLP 3D Printing with High-strength Resin</title><author>Sang, Jian ; Zhao, Xinxin ; Jiang, Kai ; Zhao, Qiancheng ; Wei, Chaofei ; Li, Ming ; Hu, Leijun ; Jin, Changxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2742-97458734b16d111a086b1bb931abf5db15c6a9b0557393c2024d0467264b90003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3D printing</topic><topic>Digital light processing (DLP)</topic><topic>Finite element method</topic><topic>High strength</topic><topic>Injection molding</topic><topic>Luminous intensity</topic><topic>Mechanical properties</topic><topic>Physics</topic><topic>Process parameters</topic><topic>Resins</topic><topic>Simulation</topic><topic>Surface defects</topic><topic>Surface properties</topic><topic>Temperature distribution</topic><topic>Tensile properties</topic><topic>Tensile strength</topic><topic>Thickness</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sang, Jian</creatorcontrib><creatorcontrib>Zhao, Xinxin</creatorcontrib><creatorcontrib>Jiang, Kai</creatorcontrib><creatorcontrib>Zhao, Qiancheng</creatorcontrib><creatorcontrib>Wei, Chaofei</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Hu, Leijun</creatorcontrib><creatorcontrib>Jin, Changxin</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sang, Jian</au><au>Zhao, Xinxin</au><au>Jiang, Kai</au><au>Zhao, Qiancheng</au><au>Wei, Chaofei</au><au>Li, Ming</au><au>Hu, Leijun</au><au>Jin, Changxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation and Process Analysis of DLP 3D Printing with High-strength Resin</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>2671</volume><issue>1</issue><spage>12002</spage><pages>12002-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>By utilizing digital light processing (DLP) printing equipment and technology, this study investigates the temperature field, stress changes, and the impact of various process parameters on the formation and strength characteristics of high-strength resin during the printing process. Abaqus birth-death element method simulation and related process tests are employed for this purpose. The simulation results demonstrate a gradual decrease in the temperature field through wavy diffusion from the center to the boundary during printing. The node temperature, displacement, and stress curves are observed to fluctuate frequently due to the subsequent printing layers, with the maximum stress point located close to the printing platform. The experimental results reveal that the test parameters possess different effects on the surface quality and tensile strength. Inappropriate parameters tend to result in surface defects. The influencing factors on the tensile strength of the sample are ranked in the following order: layer thickness, exposure time, and exposure light intensity. The molded resin sample achieves a tensile strength of 58.5MPa, which is comparable to the tensile properties of traditionally injection-molded parts.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/2671/1/012002</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2024-01, Vol.2671 (1), p.12002 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2916439675 |
source | Institute of Physics Open Access Journal Titles; Institute of Physics IOPscience extra; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | 3D printing Digital light processing (DLP) Finite element method High strength Injection molding Luminous intensity Mechanical properties Physics Process parameters Resins Simulation Surface defects Surface properties Temperature distribution Tensile properties Tensile strength Thickness Three dimensional printing |
title | Simulation and Process Analysis of DLP 3D Printing with High-strength Resin |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T12%3A51%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20and%20Process%20Analysis%20of%20DLP%203D%20Printing%20with%20High-strength%20Resin&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Sang,%20Jian&rft.date=2024-01-01&rft.volume=2671&rft.issue=1&rft.spage=12002&rft.pages=12002-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/2671/1/012002&rft_dat=%3Cproquest_cross%3E2916439675%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2916439675&rft_id=info:pmid/&rfr_iscdi=true |