Simulation and Process Analysis of DLP 3D Printing with High-strength Resin

By utilizing digital light processing (DLP) printing equipment and technology, this study investigates the temperature field, stress changes, and the impact of various process parameters on the formation and strength characteristics of high-strength resin during the printing process. Abaqus birth-de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2024-01, Vol.2671 (1), p.12002
Hauptverfasser: Sang, Jian, Zhao, Xinxin, Jiang, Kai, Zhao, Qiancheng, Wei, Chaofei, Li, Ming, Hu, Leijun, Jin, Changxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12002
container_title Journal of physics. Conference series
container_volume 2671
creator Sang, Jian
Zhao, Xinxin
Jiang, Kai
Zhao, Qiancheng
Wei, Chaofei
Li, Ming
Hu, Leijun
Jin, Changxin
description By utilizing digital light processing (DLP) printing equipment and technology, this study investigates the temperature field, stress changes, and the impact of various process parameters on the formation and strength characteristics of high-strength resin during the printing process. Abaqus birth-death element method simulation and related process tests are employed for this purpose. The simulation results demonstrate a gradual decrease in the temperature field through wavy diffusion from the center to the boundary during printing. The node temperature, displacement, and stress curves are observed to fluctuate frequently due to the subsequent printing layers, with the maximum stress point located close to the printing platform. The experimental results reveal that the test parameters possess different effects on the surface quality and tensile strength. Inappropriate parameters tend to result in surface defects. The influencing factors on the tensile strength of the sample are ranked in the following order: layer thickness, exposure time, and exposure light intensity. The molded resin sample achieves a tensile strength of 58.5MPa, which is comparable to the tensile properties of traditionally injection-molded parts.
doi_str_mv 10.1088/1742-6596/2671/1/012002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2916439675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2916439675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2742-97458734b16d111a086b1bb931abf5db15c6a9b0557393c2024d0467264b90003</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKe_wYB3wmxO0ibN5ZgfUwcOp9ch6ceWsbU16ZD9e1MqE0EwN0k4zznn5UHoEsgNkDSNQMR0xBPJI8oFRBARoITQIzQ4VI4P7zQ9RWferwlh4YgBel7Y7W6jW1tXWFc5nrs6K7zH40pv9t56XJf4djbH7DaUbNXaaok_bbvCU7tcjXzrimoZfq-Ft9U5Oin1xhcX3_cQvd_fvU2mo9nLw-NkPBtltEshRZykgsUGeA4AmqTcgDGSgTZlkhtIMq6lIUkimGQZJTTOScwF5bGRJCQfoqt-buPqj13hW7Wudy4E9opK4DGTXCSBEj2Vudp7V5SqcXar3V4BUZ051TlRnR_VmVOgenOh87rvtHXzM_ppPln8BlWTlwFmf8D_rfgC9Pp6fw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2916439675</pqid></control><display><type>article</type><title>Simulation and Process Analysis of DLP 3D Printing with High-strength Resin</title><source>Institute of Physics Open Access Journal Titles</source><source>Institute of Physics IOPscience extra</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Sang, Jian ; Zhao, Xinxin ; Jiang, Kai ; Zhao, Qiancheng ; Wei, Chaofei ; Li, Ming ; Hu, Leijun ; Jin, Changxin</creator><creatorcontrib>Sang, Jian ; Zhao, Xinxin ; Jiang, Kai ; Zhao, Qiancheng ; Wei, Chaofei ; Li, Ming ; Hu, Leijun ; Jin, Changxin</creatorcontrib><description>By utilizing digital light processing (DLP) printing equipment and technology, this study investigates the temperature field, stress changes, and the impact of various process parameters on the formation and strength characteristics of high-strength resin during the printing process. Abaqus birth-death element method simulation and related process tests are employed for this purpose. The simulation results demonstrate a gradual decrease in the temperature field through wavy diffusion from the center to the boundary during printing. The node temperature, displacement, and stress curves are observed to fluctuate frequently due to the subsequent printing layers, with the maximum stress point located close to the printing platform. The experimental results reveal that the test parameters possess different effects on the surface quality and tensile strength. Inappropriate parameters tend to result in surface defects. The influencing factors on the tensile strength of the sample are ranked in the following order: layer thickness, exposure time, and exposure light intensity. The molded resin sample achieves a tensile strength of 58.5MPa, which is comparable to the tensile properties of traditionally injection-molded parts.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/2671/1/012002</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>3D printing ; Digital light processing (DLP) ; Finite element method ; High strength ; Injection molding ; Luminous intensity ; Mechanical properties ; Physics ; Process parameters ; Resins ; Simulation ; Surface defects ; Surface properties ; Temperature distribution ; Tensile properties ; Tensile strength ; Thickness ; Three dimensional printing</subject><ispartof>Journal of physics. Conference series, 2024-01, Vol.2671 (1), p.12002</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2742-97458734b16d111a086b1bb931abf5db15c6a9b0557393c2024d0467264b90003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/2671/1/012002/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Sang, Jian</creatorcontrib><creatorcontrib>Zhao, Xinxin</creatorcontrib><creatorcontrib>Jiang, Kai</creatorcontrib><creatorcontrib>Zhao, Qiancheng</creatorcontrib><creatorcontrib>Wei, Chaofei</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Hu, Leijun</creatorcontrib><creatorcontrib>Jin, Changxin</creatorcontrib><title>Simulation and Process Analysis of DLP 3D Printing with High-strength Resin</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>By utilizing digital light processing (DLP) printing equipment and technology, this study investigates the temperature field, stress changes, and the impact of various process parameters on the formation and strength characteristics of high-strength resin during the printing process. Abaqus birth-death element method simulation and related process tests are employed for this purpose. The simulation results demonstrate a gradual decrease in the temperature field through wavy diffusion from the center to the boundary during printing. The node temperature, displacement, and stress curves are observed to fluctuate frequently due to the subsequent printing layers, with the maximum stress point located close to the printing platform. The experimental results reveal that the test parameters possess different effects on the surface quality and tensile strength. Inappropriate parameters tend to result in surface defects. The influencing factors on the tensile strength of the sample are ranked in the following order: layer thickness, exposure time, and exposure light intensity. The molded resin sample achieves a tensile strength of 58.5MPa, which is comparable to the tensile properties of traditionally injection-molded parts.</description><subject>3D printing</subject><subject>Digital light processing (DLP)</subject><subject>Finite element method</subject><subject>High strength</subject><subject>Injection molding</subject><subject>Luminous intensity</subject><subject>Mechanical properties</subject><subject>Physics</subject><subject>Process parameters</subject><subject>Resins</subject><subject>Simulation</subject><subject>Surface defects</subject><subject>Surface properties</subject><subject>Temperature distribution</subject><subject>Tensile properties</subject><subject>Tensile strength</subject><subject>Thickness</subject><subject>Three dimensional printing</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkF1LwzAUhoMoOKe_wYB3wmxO0ibN5ZgfUwcOp9ch6ceWsbU16ZD9e1MqE0EwN0k4zznn5UHoEsgNkDSNQMR0xBPJI8oFRBARoITQIzQ4VI4P7zQ9RWferwlh4YgBel7Y7W6jW1tXWFc5nrs6K7zH40pv9t56XJf4djbH7DaUbNXaaok_bbvCU7tcjXzrimoZfq-Ft9U5Oin1xhcX3_cQvd_fvU2mo9nLw-NkPBtltEshRZykgsUGeA4AmqTcgDGSgTZlkhtIMq6lIUkimGQZJTTOScwF5bGRJCQfoqt-buPqj13hW7Wudy4E9opK4DGTXCSBEj2Vudp7V5SqcXar3V4BUZ051TlRnR_VmVOgenOh87rvtHXzM_ppPln8BlWTlwFmf8D_rfgC9Pp6fw</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Sang, Jian</creator><creator>Zhao, Xinxin</creator><creator>Jiang, Kai</creator><creator>Zhao, Qiancheng</creator><creator>Wei, Chaofei</creator><creator>Li, Ming</creator><creator>Hu, Leijun</creator><creator>Jin, Changxin</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20240101</creationdate><title>Simulation and Process Analysis of DLP 3D Printing with High-strength Resin</title><author>Sang, Jian ; Zhao, Xinxin ; Jiang, Kai ; Zhao, Qiancheng ; Wei, Chaofei ; Li, Ming ; Hu, Leijun ; Jin, Changxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2742-97458734b16d111a086b1bb931abf5db15c6a9b0557393c2024d0467264b90003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3D printing</topic><topic>Digital light processing (DLP)</topic><topic>Finite element method</topic><topic>High strength</topic><topic>Injection molding</topic><topic>Luminous intensity</topic><topic>Mechanical properties</topic><topic>Physics</topic><topic>Process parameters</topic><topic>Resins</topic><topic>Simulation</topic><topic>Surface defects</topic><topic>Surface properties</topic><topic>Temperature distribution</topic><topic>Tensile properties</topic><topic>Tensile strength</topic><topic>Thickness</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sang, Jian</creatorcontrib><creatorcontrib>Zhao, Xinxin</creatorcontrib><creatorcontrib>Jiang, Kai</creatorcontrib><creatorcontrib>Zhao, Qiancheng</creatorcontrib><creatorcontrib>Wei, Chaofei</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Hu, Leijun</creatorcontrib><creatorcontrib>Jin, Changxin</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sang, Jian</au><au>Zhao, Xinxin</au><au>Jiang, Kai</au><au>Zhao, Qiancheng</au><au>Wei, Chaofei</au><au>Li, Ming</au><au>Hu, Leijun</au><au>Jin, Changxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation and Process Analysis of DLP 3D Printing with High-strength Resin</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>2671</volume><issue>1</issue><spage>12002</spage><pages>12002-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>By utilizing digital light processing (DLP) printing equipment and technology, this study investigates the temperature field, stress changes, and the impact of various process parameters on the formation and strength characteristics of high-strength resin during the printing process. Abaqus birth-death element method simulation and related process tests are employed for this purpose. The simulation results demonstrate a gradual decrease in the temperature field through wavy diffusion from the center to the boundary during printing. The node temperature, displacement, and stress curves are observed to fluctuate frequently due to the subsequent printing layers, with the maximum stress point located close to the printing platform. The experimental results reveal that the test parameters possess different effects on the surface quality and tensile strength. Inappropriate parameters tend to result in surface defects. The influencing factors on the tensile strength of the sample are ranked in the following order: layer thickness, exposure time, and exposure light intensity. The molded resin sample achieves a tensile strength of 58.5MPa, which is comparable to the tensile properties of traditionally injection-molded parts.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/2671/1/012002</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2024-01, Vol.2671 (1), p.12002
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2916439675
source Institute of Physics Open Access Journal Titles; Institute of Physics IOPscience extra; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects 3D printing
Digital light processing (DLP)
Finite element method
High strength
Injection molding
Luminous intensity
Mechanical properties
Physics
Process parameters
Resins
Simulation
Surface defects
Surface properties
Temperature distribution
Tensile properties
Tensile strength
Thickness
Three dimensional printing
title Simulation and Process Analysis of DLP 3D Printing with High-strength Resin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T12%3A51%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20and%20Process%20Analysis%20of%20DLP%203D%20Printing%20with%20High-strength%20Resin&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Sang,%20Jian&rft.date=2024-01-01&rft.volume=2671&rft.issue=1&rft.spage=12002&rft.pages=12002-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/2671/1/012002&rft_dat=%3Cproquest_cross%3E2916439675%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2916439675&rft_id=info:pmid/&rfr_iscdi=true