The rational design of poly (inoic liquid) for 4.0 V graphene-based supercapacitors
The narrow operating potential range is the main obstacle to limit the increase of energy density of supercapacitors. Surface functionalization of carbon-based electrode materials can effectively improve their electrochemical properties. In this work, a series of ionic liquid (ILs)/graphene composit...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in electronics 2024, Vol.35 (2), p.165, Article 165 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 165 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 35 |
creator | Kang, Jing Zhang, Chen Zhou, Ruisha Liang, Jiachen |
description | The narrow operating potential range is the main obstacle to limit the increase of energy density of supercapacitors. Surface functionalization of carbon-based electrode materials can effectively improve their electrochemical properties. In this work, a series of ionic liquid (ILs)/graphene composite electrode materials were designed and prepared using covalent and non-covalent strategies. The effects of ionic liquid modification on extending the operating voltage window, restraining self-discharge and optimizing the cycle life of devices were comprehensively studied. As a result, the non-covalent modification method can effectively reduce the defect degree of the electrodes without influencing their porosity. Meanwhile, the wettability of ILs/graphene with ILs electrolytes is improved and the self-discharge effect of the electrodes is suppressed. The resulting supercapacitors exhibited excellent stability at 4.0 V for 10,000 cycles with energy densities reaching up to 65 Wh kg
–1
. |
doi_str_mv | 10.1007/s10854-023-11900-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2916254220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2916254220</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-1a6e5995178a426d75c993f548075e43e703c5d266e1610e556828f5ebacb1853</originalsourceid><addsrcrecordid>eNp9kL1OwzAURi0EEqXwAkyWWGAwXP_Fzogq_qRKLAWxWW7itK5CnNqJ1L4Nz8KTEQgSG9NdzvmkexA6p3BNAdRNoqClIMA4oTQHILsDNKFScSI0eztEE8ilIkIydoxOUtoAQCa4nqDFYu1wtJ0Pja1x6ZJfNThUuA31Hl_6JvgC137b-_IKVyFicQ2fH694FW27do0jS5tciVPfuljY1ha-CzGdoqPK1smd_d4perm_W8weyfz54Wl2OycFU9ARajMn81xSpa1gWalkkee8kkKDkk5wp4AXsmRZ5mhGwUmZaaYr6Za2WFIt-RRdjLttDNvepc5sQh-HR5JhOc2YFIzBQLGRKmJIKbrKtNG_27g3FMx3PTPWM0M981PP7AaJj1Ia4Gbl4t_0P9YXhMBx2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2916254220</pqid></control><display><type>article</type><title>The rational design of poly (inoic liquid) for 4.0 V graphene-based supercapacitors</title><source>SpringerNature Journals</source><creator>Kang, Jing ; Zhang, Chen ; Zhou, Ruisha ; Liang, Jiachen</creator><creatorcontrib>Kang, Jing ; Zhang, Chen ; Zhou, Ruisha ; Liang, Jiachen</creatorcontrib><description>The narrow operating potential range is the main obstacle to limit the increase of energy density of supercapacitors. Surface functionalization of carbon-based electrode materials can effectively improve their electrochemical properties. In this work, a series of ionic liquid (ILs)/graphene composite electrode materials were designed and prepared using covalent and non-covalent strategies. The effects of ionic liquid modification on extending the operating voltage window, restraining self-discharge and optimizing the cycle life of devices were comprehensively studied. As a result, the non-covalent modification method can effectively reduce the defect degree of the electrodes without influencing their porosity. Meanwhile, the wettability of ILs/graphene with ILs electrolytes is improved and the self-discharge effect of the electrodes is suppressed. The resulting supercapacitors exhibited excellent stability at 4.0 V for 10,000 cycles with energy densities reaching up to 65 Wh kg
–1
.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-023-11900-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Carbon black ; Characterization and Evaluation of Materials ; Chemical engineering ; Chemistry and Materials Science ; Composite materials ; Covalence ; Discharge ; Electrochemical analysis ; Electrode materials ; Electrodes ; Electrolytes ; Energy storage ; Graphene ; Graphite ; Ionic liquids ; Materials Science ; Optical and Electronic Materials ; Solvents ; Supercapacitors ; Wettability</subject><ispartof>Journal of materials science. Materials in electronics, 2024, Vol.35 (2), p.165, Article 165</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-1a6e5995178a426d75c993f548075e43e703c5d266e1610e556828f5ebacb1853</cites><orcidid>0000-0003-0520-2093</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-023-11900-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-023-11900-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kang, Jing</creatorcontrib><creatorcontrib>Zhang, Chen</creatorcontrib><creatorcontrib>Zhou, Ruisha</creatorcontrib><creatorcontrib>Liang, Jiachen</creatorcontrib><title>The rational design of poly (inoic liquid) for 4.0 V graphene-based supercapacitors</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>The narrow operating potential range is the main obstacle to limit the increase of energy density of supercapacitors. Surface functionalization of carbon-based electrode materials can effectively improve their electrochemical properties. In this work, a series of ionic liquid (ILs)/graphene composite electrode materials were designed and prepared using covalent and non-covalent strategies. The effects of ionic liquid modification on extending the operating voltage window, restraining self-discharge and optimizing the cycle life of devices were comprehensively studied. As a result, the non-covalent modification method can effectively reduce the defect degree of the electrodes without influencing their porosity. Meanwhile, the wettability of ILs/graphene with ILs electrolytes is improved and the self-discharge effect of the electrodes is suppressed. The resulting supercapacitors exhibited excellent stability at 4.0 V for 10,000 cycles with energy densities reaching up to 65 Wh kg
–1
.</description><subject>Carbon black</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical engineering</subject><subject>Chemistry and Materials Science</subject><subject>Composite materials</subject><subject>Covalence</subject><subject>Discharge</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Energy storage</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Ionic liquids</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Solvents</subject><subject>Supercapacitors</subject><subject>Wettability</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAURi0EEqXwAkyWWGAwXP_Fzogq_qRKLAWxWW7itK5CnNqJ1L4Nz8KTEQgSG9NdzvmkexA6p3BNAdRNoqClIMA4oTQHILsDNKFScSI0eztEE8ilIkIydoxOUtoAQCa4nqDFYu1wtJ0Pja1x6ZJfNThUuA31Hl_6JvgC137b-_IKVyFicQ2fH694FW27do0jS5tciVPfuljY1ha-CzGdoqPK1smd_d4perm_W8weyfz54Wl2OycFU9ARajMn81xSpa1gWalkkee8kkKDkk5wp4AXsmRZ5mhGwUmZaaYr6Za2WFIt-RRdjLttDNvepc5sQh-HR5JhOc2YFIzBQLGRKmJIKbrKtNG_27g3FMx3PTPWM0M981PP7AaJj1Ia4Gbl4t_0P9YXhMBx2w</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Kang, Jing</creator><creator>Zhang, Chen</creator><creator>Zhou, Ruisha</creator><creator>Liang, Jiachen</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0520-2093</orcidid></search><sort><creationdate>2024</creationdate><title>The rational design of poly (inoic liquid) for 4.0 V graphene-based supercapacitors</title><author>Kang, Jing ; Zhang, Chen ; Zhou, Ruisha ; Liang, Jiachen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-1a6e5995178a426d75c993f548075e43e703c5d266e1610e556828f5ebacb1853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carbon black</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical engineering</topic><topic>Chemistry and Materials Science</topic><topic>Composite materials</topic><topic>Covalence</topic><topic>Discharge</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Energy storage</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Ionic liquids</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Solvents</topic><topic>Supercapacitors</topic><topic>Wettability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Jing</creatorcontrib><creatorcontrib>Zhang, Chen</creatorcontrib><creatorcontrib>Zhou, Ruisha</creatorcontrib><creatorcontrib>Liang, Jiachen</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Jing</au><au>Zhang, Chen</au><au>Zhou, Ruisha</au><au>Liang, Jiachen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The rational design of poly (inoic liquid) for 4.0 V graphene-based supercapacitors</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2024</date><risdate>2024</risdate><volume>35</volume><issue>2</issue><spage>165</spage><pages>165-</pages><artnum>165</artnum><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>The narrow operating potential range is the main obstacle to limit the increase of energy density of supercapacitors. Surface functionalization of carbon-based electrode materials can effectively improve their electrochemical properties. In this work, a series of ionic liquid (ILs)/graphene composite electrode materials were designed and prepared using covalent and non-covalent strategies. The effects of ionic liquid modification on extending the operating voltage window, restraining self-discharge and optimizing the cycle life of devices were comprehensively studied. As a result, the non-covalent modification method can effectively reduce the defect degree of the electrodes without influencing their porosity. Meanwhile, the wettability of ILs/graphene with ILs electrolytes is improved and the self-discharge effect of the electrodes is suppressed. The resulting supercapacitors exhibited excellent stability at 4.0 V for 10,000 cycles with energy densities reaching up to 65 Wh kg
–1
.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-023-11900-x</doi><orcidid>https://orcid.org/0000-0003-0520-2093</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2024, Vol.35 (2), p.165, Article 165 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_2916254220 |
source | SpringerNature Journals |
subjects | Carbon black Characterization and Evaluation of Materials Chemical engineering Chemistry and Materials Science Composite materials Covalence Discharge Electrochemical analysis Electrode materials Electrodes Electrolytes Energy storage Graphene Graphite Ionic liquids Materials Science Optical and Electronic Materials Solvents Supercapacitors Wettability |
title | The rational design of poly (inoic liquid) for 4.0 V graphene-based supercapacitors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T15%3A04%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20rational%20design%20of%20poly%20(inoic%20liquid)%20for%204.0%C2%A0V%20graphene-based%20supercapacitors&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Kang,%20Jing&rft.date=2024&rft.volume=35&rft.issue=2&rft.spage=165&rft.pages=165-&rft.artnum=165&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-023-11900-x&rft_dat=%3Cproquest_cross%3E2916254220%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2916254220&rft_id=info:pmid/&rfr_iscdi=true |