The rational design of poly (inoic liquid) for 4.0 V graphene-based supercapacitors

The narrow operating potential range is the main obstacle to limit the increase of energy density of supercapacitors. Surface functionalization of carbon-based electrode materials can effectively improve their electrochemical properties. In this work, a series of ionic liquid (ILs)/graphene composit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2024, Vol.35 (2), p.165, Article 165
Hauptverfasser: Kang, Jing, Zhang, Chen, Zhou, Ruisha, Liang, Jiachen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 165
container_title Journal of materials science. Materials in electronics
container_volume 35
creator Kang, Jing
Zhang, Chen
Zhou, Ruisha
Liang, Jiachen
description The narrow operating potential range is the main obstacle to limit the increase of energy density of supercapacitors. Surface functionalization of carbon-based electrode materials can effectively improve their electrochemical properties. In this work, a series of ionic liquid (ILs)/graphene composite electrode materials were designed and prepared using covalent and non-covalent strategies. The effects of ionic liquid modification on extending the operating voltage window, restraining self-discharge and optimizing the cycle life of devices were comprehensively studied. As a result, the non-covalent modification method can effectively reduce the defect degree of the electrodes without influencing their porosity. Meanwhile, the wettability of ILs/graphene with ILs electrolytes is improved and the self-discharge effect of the electrodes is suppressed. The resulting supercapacitors exhibited excellent stability at 4.0 V for 10,000 cycles with energy densities reaching up to 65 Wh kg –1 .
doi_str_mv 10.1007/s10854-023-11900-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2916254220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2916254220</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-1a6e5995178a426d75c993f548075e43e703c5d266e1610e556828f5ebacb1853</originalsourceid><addsrcrecordid>eNp9kL1OwzAURi0EEqXwAkyWWGAwXP_Fzogq_qRKLAWxWW7itK5CnNqJ1L4Nz8KTEQgSG9NdzvmkexA6p3BNAdRNoqClIMA4oTQHILsDNKFScSI0eztEE8ilIkIydoxOUtoAQCa4nqDFYu1wtJ0Pja1x6ZJfNThUuA31Hl_6JvgC137b-_IKVyFicQ2fH694FW27do0jS5tciVPfuljY1ha-CzGdoqPK1smd_d4perm_W8weyfz54Wl2OycFU9ARajMn81xSpa1gWalkkee8kkKDkk5wp4AXsmRZ5mhGwUmZaaYr6Za2WFIt-RRdjLttDNvepc5sQh-HR5JhOc2YFIzBQLGRKmJIKbrKtNG_27g3FMx3PTPWM0M981PP7AaJj1Ia4Gbl4t_0P9YXhMBx2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2916254220</pqid></control><display><type>article</type><title>The rational design of poly (inoic liquid) for 4.0 V graphene-based supercapacitors</title><source>SpringerNature Journals</source><creator>Kang, Jing ; Zhang, Chen ; Zhou, Ruisha ; Liang, Jiachen</creator><creatorcontrib>Kang, Jing ; Zhang, Chen ; Zhou, Ruisha ; Liang, Jiachen</creatorcontrib><description>The narrow operating potential range is the main obstacle to limit the increase of energy density of supercapacitors. Surface functionalization of carbon-based electrode materials can effectively improve their electrochemical properties. In this work, a series of ionic liquid (ILs)/graphene composite electrode materials were designed and prepared using covalent and non-covalent strategies. The effects of ionic liquid modification on extending the operating voltage window, restraining self-discharge and optimizing the cycle life of devices were comprehensively studied. As a result, the non-covalent modification method can effectively reduce the defect degree of the electrodes without influencing their porosity. Meanwhile, the wettability of ILs/graphene with ILs electrolytes is improved and the self-discharge effect of the electrodes is suppressed. The resulting supercapacitors exhibited excellent stability at 4.0 V for 10,000 cycles with energy densities reaching up to 65 Wh kg –1 .</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-023-11900-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Carbon black ; Characterization and Evaluation of Materials ; Chemical engineering ; Chemistry and Materials Science ; Composite materials ; Covalence ; Discharge ; Electrochemical analysis ; Electrode materials ; Electrodes ; Electrolytes ; Energy storage ; Graphene ; Graphite ; Ionic liquids ; Materials Science ; Optical and Electronic Materials ; Solvents ; Supercapacitors ; Wettability</subject><ispartof>Journal of materials science. Materials in electronics, 2024, Vol.35 (2), p.165, Article 165</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-1a6e5995178a426d75c993f548075e43e703c5d266e1610e556828f5ebacb1853</cites><orcidid>0000-0003-0520-2093</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-023-11900-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-023-11900-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kang, Jing</creatorcontrib><creatorcontrib>Zhang, Chen</creatorcontrib><creatorcontrib>Zhou, Ruisha</creatorcontrib><creatorcontrib>Liang, Jiachen</creatorcontrib><title>The rational design of poly (inoic liquid) for 4.0 V graphene-based supercapacitors</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>The narrow operating potential range is the main obstacle to limit the increase of energy density of supercapacitors. Surface functionalization of carbon-based electrode materials can effectively improve their electrochemical properties. In this work, a series of ionic liquid (ILs)/graphene composite electrode materials were designed and prepared using covalent and non-covalent strategies. The effects of ionic liquid modification on extending the operating voltage window, restraining self-discharge and optimizing the cycle life of devices were comprehensively studied. As a result, the non-covalent modification method can effectively reduce the defect degree of the electrodes without influencing their porosity. Meanwhile, the wettability of ILs/graphene with ILs electrolytes is improved and the self-discharge effect of the electrodes is suppressed. The resulting supercapacitors exhibited excellent stability at 4.0 V for 10,000 cycles with energy densities reaching up to 65 Wh kg –1 .</description><subject>Carbon black</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical engineering</subject><subject>Chemistry and Materials Science</subject><subject>Composite materials</subject><subject>Covalence</subject><subject>Discharge</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Energy storage</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Ionic liquids</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Solvents</subject><subject>Supercapacitors</subject><subject>Wettability</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAURi0EEqXwAkyWWGAwXP_Fzogq_qRKLAWxWW7itK5CnNqJ1L4Nz8KTEQgSG9NdzvmkexA6p3BNAdRNoqClIMA4oTQHILsDNKFScSI0eztEE8ilIkIydoxOUtoAQCa4nqDFYu1wtJ0Pja1x6ZJfNThUuA31Hl_6JvgC137b-_IKVyFicQ2fH694FW27do0jS5tciVPfuljY1ha-CzGdoqPK1smd_d4perm_W8weyfz54Wl2OycFU9ARajMn81xSpa1gWalkkee8kkKDkk5wp4AXsmRZ5mhGwUmZaaYr6Za2WFIt-RRdjLttDNvepc5sQh-HR5JhOc2YFIzBQLGRKmJIKbrKtNG_27g3FMx3PTPWM0M981PP7AaJj1Ia4Gbl4t_0P9YXhMBx2w</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Kang, Jing</creator><creator>Zhang, Chen</creator><creator>Zhou, Ruisha</creator><creator>Liang, Jiachen</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0520-2093</orcidid></search><sort><creationdate>2024</creationdate><title>The rational design of poly (inoic liquid) for 4.0 V graphene-based supercapacitors</title><author>Kang, Jing ; Zhang, Chen ; Zhou, Ruisha ; Liang, Jiachen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-1a6e5995178a426d75c993f548075e43e703c5d266e1610e556828f5ebacb1853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carbon black</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical engineering</topic><topic>Chemistry and Materials Science</topic><topic>Composite materials</topic><topic>Covalence</topic><topic>Discharge</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Energy storage</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Ionic liquids</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Solvents</topic><topic>Supercapacitors</topic><topic>Wettability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Jing</creatorcontrib><creatorcontrib>Zhang, Chen</creatorcontrib><creatorcontrib>Zhou, Ruisha</creatorcontrib><creatorcontrib>Liang, Jiachen</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Jing</au><au>Zhang, Chen</au><au>Zhou, Ruisha</au><au>Liang, Jiachen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The rational design of poly (inoic liquid) for 4.0 V graphene-based supercapacitors</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2024</date><risdate>2024</risdate><volume>35</volume><issue>2</issue><spage>165</spage><pages>165-</pages><artnum>165</artnum><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>The narrow operating potential range is the main obstacle to limit the increase of energy density of supercapacitors. Surface functionalization of carbon-based electrode materials can effectively improve their electrochemical properties. In this work, a series of ionic liquid (ILs)/graphene composite electrode materials were designed and prepared using covalent and non-covalent strategies. The effects of ionic liquid modification on extending the operating voltage window, restraining self-discharge and optimizing the cycle life of devices were comprehensively studied. As a result, the non-covalent modification method can effectively reduce the defect degree of the electrodes without influencing their porosity. Meanwhile, the wettability of ILs/graphene with ILs electrolytes is improved and the self-discharge effect of the electrodes is suppressed. The resulting supercapacitors exhibited excellent stability at 4.0 V for 10,000 cycles with energy densities reaching up to 65 Wh kg –1 .</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-023-11900-x</doi><orcidid>https://orcid.org/0000-0003-0520-2093</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2024, Vol.35 (2), p.165, Article 165
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2916254220
source SpringerNature Journals
subjects Carbon black
Characterization and Evaluation of Materials
Chemical engineering
Chemistry and Materials Science
Composite materials
Covalence
Discharge
Electrochemical analysis
Electrode materials
Electrodes
Electrolytes
Energy storage
Graphene
Graphite
Ionic liquids
Materials Science
Optical and Electronic Materials
Solvents
Supercapacitors
Wettability
title The rational design of poly (inoic liquid) for 4.0 V graphene-based supercapacitors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T15%3A04%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20rational%20design%20of%20poly%20(inoic%20liquid)%20for%204.0%C2%A0V%20graphene-based%20supercapacitors&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Kang,%20Jing&rft.date=2024&rft.volume=35&rft.issue=2&rft.spage=165&rft.pages=165-&rft.artnum=165&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-023-11900-x&rft_dat=%3Cproquest_cross%3E2916254220%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2916254220&rft_id=info:pmid/&rfr_iscdi=true