The Use of Conditional Variational Autoencoders for Simulation of EAS Images from IACTs

Imaging atmospheric Cherenkov telescopes are used to record images of extensive area showers caused by high-energy particles colliding with the upper atmosphere. The images are analyzed to determine events’ physical parameters, such as the type and the energy of the primary particles. The distributi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Moscow University physics bulletin 2023-12, Vol.78 (Suppl 1), p.S37-S44
Hauptverfasser: Kryukov, A. P., Polyakov, S. P., Vlaskina, A. A., Gres, E. O., Demichev, A. P., Dubenskaya, Yu. Yu, Zhurov, D. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page S44
container_issue Suppl 1
container_start_page S37
container_title Moscow University physics bulletin
container_volume 78
creator Kryukov, A. P.
Polyakov, S. P.
Vlaskina, A. A.
Gres, E. O.
Demichev, A. P.
Dubenskaya, Yu. Yu
Zhurov, D. P.
description Imaging atmospheric Cherenkov telescopes are used to record images of extensive area showers caused by high-energy particles colliding with the upper atmosphere. The images are analyzed to determine events’ physical parameters, such as the type and the energy of the primary particles. The distributions of some of the physical parameters can be used as well, for example, to determine the properties of a gamma ray source. The key problem of any experiment is the calibration of experimental data. For this purpose, Monte Carlo simulated data with known values of the physical parameters are used. The main disadvantage of this method is its extremely high requirements for computing resources and the large amount of time spent on modelling. In this paper, we use an alternative approach: Cherenkov telescope images are simulated with conditional variational autoencoders. We compare the characteristics of both the individual images and their Hillas parameter distributions with those of the images generated by the Monte Carlo method.
doi_str_mv 10.3103/S0027134923070184
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2916039293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2916039293</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-c0c17ec5cc474171ba0f7d23a3242a43d140608b943e01e10efa23fb9d8dc3fb3</originalsourceid><addsrcrecordid>eNp1kE9Lw0AQxRdRsP75AN4WPEdndrZJ9hhC1ULBQ1s9hu1mU1OabN1NDn57E1vwIJ7ewHu_x_AYu0N4IAR6XAKIBEkqQZAApvKMTVCRjFIZwzmbjHY0-pfsKoQdwDQWpCbsffVh-TpY7iqeu7asu9q1es_ftK_16c76ztnWuNL6wCvn-bJu-v2PO2KzbMnnjd7awfSu4fMsX4UbdlHpfbC3J71m66fZKn-JFq_P8zxbREbEaRcZMJhYMzVGJhIT3GioklKQJiGFllSihBjSjZJkAS2CrbSgaqPKtDSD0jW7P_YevPvsbeiKnev98HUohMIYSAlFQwqPKeNdCN5WxcHXjfZfBUIx7lf82W9gxJEJQ7bdWv_b_D_0Df4xcHU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2916039293</pqid></control><display><type>article</type><title>The Use of Conditional Variational Autoencoders for Simulation of EAS Images from IACTs</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kryukov, A. P. ; Polyakov, S. P. ; Vlaskina, A. A. ; Gres, E. O. ; Demichev, A. P. ; Dubenskaya, Yu. Yu ; Zhurov, D. P.</creator><creatorcontrib>Kryukov, A. P. ; Polyakov, S. P. ; Vlaskina, A. A. ; Gres, E. O. ; Demichev, A. P. ; Dubenskaya, Yu. Yu ; Zhurov, D. P.</creatorcontrib><description>Imaging atmospheric Cherenkov telescopes are used to record images of extensive area showers caused by high-energy particles colliding with the upper atmosphere. The images are analyzed to determine events’ physical parameters, such as the type and the energy of the primary particles. The distributions of some of the physical parameters can be used as well, for example, to determine the properties of a gamma ray source. The key problem of any experiment is the calibration of experimental data. For this purpose, Monte Carlo simulated data with known values of the physical parameters are used. The main disadvantage of this method is its extremely high requirements for computing resources and the large amount of time spent on modelling. In this paper, we use an alternative approach: Cherenkov telescope images are simulated with conditional variational autoencoders. We compare the characteristics of both the individual images and their Hillas parameter distributions with those of the images generated by the Monte Carlo method.</description><identifier>ISSN: 0027-1349</identifier><identifier>EISSN: 1934-8460</identifier><identifier>DOI: 10.3103/S0027134923070184</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Gamma ray sources ; Machine Learning in Fundamental Physics ; Mathematical and Computational Physics ; Monte Carlo simulation ; Parameters ; Physical properties ; Physics ; Physics and Astronomy ; Telescopes ; Theoretical ; Upper atmosphere</subject><ispartof>Moscow University physics bulletin, 2023-12, Vol.78 (Suppl 1), p.S37-S44</ispartof><rights>Allerton Press, Inc. 2023</rights><rights>Allerton Press, Inc. 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-c0c17ec5cc474171ba0f7d23a3242a43d140608b943e01e10efa23fb9d8dc3fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S0027134923070184$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S0027134923070184$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kryukov, A. P.</creatorcontrib><creatorcontrib>Polyakov, S. P.</creatorcontrib><creatorcontrib>Vlaskina, A. A.</creatorcontrib><creatorcontrib>Gres, E. O.</creatorcontrib><creatorcontrib>Demichev, A. P.</creatorcontrib><creatorcontrib>Dubenskaya, Yu. Yu</creatorcontrib><creatorcontrib>Zhurov, D. P.</creatorcontrib><title>The Use of Conditional Variational Autoencoders for Simulation of EAS Images from IACTs</title><title>Moscow University physics bulletin</title><addtitle>Moscow Univ. Phys</addtitle><description>Imaging atmospheric Cherenkov telescopes are used to record images of extensive area showers caused by high-energy particles colliding with the upper atmosphere. The images are analyzed to determine events’ physical parameters, such as the type and the energy of the primary particles. The distributions of some of the physical parameters can be used as well, for example, to determine the properties of a gamma ray source. The key problem of any experiment is the calibration of experimental data. For this purpose, Monte Carlo simulated data with known values of the physical parameters are used. The main disadvantage of this method is its extremely high requirements for computing resources and the large amount of time spent on modelling. In this paper, we use an alternative approach: Cherenkov telescope images are simulated with conditional variational autoencoders. We compare the characteristics of both the individual images and their Hillas parameter distributions with those of the images generated by the Monte Carlo method.</description><subject>Gamma ray sources</subject><subject>Machine Learning in Fundamental Physics</subject><subject>Mathematical and Computational Physics</subject><subject>Monte Carlo simulation</subject><subject>Parameters</subject><subject>Physical properties</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Telescopes</subject><subject>Theoretical</subject><subject>Upper atmosphere</subject><issn>0027-1349</issn><issn>1934-8460</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE9Lw0AQxRdRsP75AN4WPEdndrZJ9hhC1ULBQ1s9hu1mU1OabN1NDn57E1vwIJ7ewHu_x_AYu0N4IAR6XAKIBEkqQZAApvKMTVCRjFIZwzmbjHY0-pfsKoQdwDQWpCbsffVh-TpY7iqeu7asu9q1es_ftK_16c76ztnWuNL6wCvn-bJu-v2PO2KzbMnnjd7awfSu4fMsX4UbdlHpfbC3J71m66fZKn-JFq_P8zxbREbEaRcZMJhYMzVGJhIT3GioklKQJiGFllSihBjSjZJkAS2CrbSgaqPKtDSD0jW7P_YevPvsbeiKnev98HUohMIYSAlFQwqPKeNdCN5WxcHXjfZfBUIx7lf82W9gxJEJQ7bdWv_b_D_0Df4xcHU</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Kryukov, A. P.</creator><creator>Polyakov, S. P.</creator><creator>Vlaskina, A. A.</creator><creator>Gres, E. O.</creator><creator>Demichev, A. P.</creator><creator>Dubenskaya, Yu. Yu</creator><creator>Zhurov, D. P.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231201</creationdate><title>The Use of Conditional Variational Autoencoders for Simulation of EAS Images from IACTs</title><author>Kryukov, A. P. ; Polyakov, S. P. ; Vlaskina, A. A. ; Gres, E. O. ; Demichev, A. P. ; Dubenskaya, Yu. Yu ; Zhurov, D. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-c0c17ec5cc474171ba0f7d23a3242a43d140608b943e01e10efa23fb9d8dc3fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Gamma ray sources</topic><topic>Machine Learning in Fundamental Physics</topic><topic>Mathematical and Computational Physics</topic><topic>Monte Carlo simulation</topic><topic>Parameters</topic><topic>Physical properties</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Telescopes</topic><topic>Theoretical</topic><topic>Upper atmosphere</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kryukov, A. P.</creatorcontrib><creatorcontrib>Polyakov, S. P.</creatorcontrib><creatorcontrib>Vlaskina, A. A.</creatorcontrib><creatorcontrib>Gres, E. O.</creatorcontrib><creatorcontrib>Demichev, A. P.</creatorcontrib><creatorcontrib>Dubenskaya, Yu. Yu</creatorcontrib><creatorcontrib>Zhurov, D. P.</creatorcontrib><collection>CrossRef</collection><jtitle>Moscow University physics bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kryukov, A. P.</au><au>Polyakov, S. P.</au><au>Vlaskina, A. A.</au><au>Gres, E. O.</au><au>Demichev, A. P.</au><au>Dubenskaya, Yu. Yu</au><au>Zhurov, D. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Use of Conditional Variational Autoencoders for Simulation of EAS Images from IACTs</atitle><jtitle>Moscow University physics bulletin</jtitle><stitle>Moscow Univ. Phys</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>78</volume><issue>Suppl 1</issue><spage>S37</spage><epage>S44</epage><pages>S37-S44</pages><issn>0027-1349</issn><eissn>1934-8460</eissn><abstract>Imaging atmospheric Cherenkov telescopes are used to record images of extensive area showers caused by high-energy particles colliding with the upper atmosphere. The images are analyzed to determine events’ physical parameters, such as the type and the energy of the primary particles. The distributions of some of the physical parameters can be used as well, for example, to determine the properties of a gamma ray source. The key problem of any experiment is the calibration of experimental data. For this purpose, Monte Carlo simulated data with known values of the physical parameters are used. The main disadvantage of this method is its extremely high requirements for computing resources and the large amount of time spent on modelling. In this paper, we use an alternative approach: Cherenkov telescope images are simulated with conditional variational autoencoders. We compare the characteristics of both the individual images and their Hillas parameter distributions with those of the images generated by the Monte Carlo method.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S0027134923070184</doi></addata></record>
fulltext fulltext
identifier ISSN: 0027-1349
ispartof Moscow University physics bulletin, 2023-12, Vol.78 (Suppl 1), p.S37-S44
issn 0027-1349
1934-8460
language eng
recordid cdi_proquest_journals_2916039293
source SpringerLink Journals - AutoHoldings
subjects Gamma ray sources
Machine Learning in Fundamental Physics
Mathematical and Computational Physics
Monte Carlo simulation
Parameters
Physical properties
Physics
Physics and Astronomy
Telescopes
Theoretical
Upper atmosphere
title The Use of Conditional Variational Autoencoders for Simulation of EAS Images from IACTs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A49%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Use%20of%20Conditional%20Variational%20Autoencoders%20for%20Simulation%20of%20EAS%20Images%20from%20IACTs&rft.jtitle=Moscow%20University%20physics%20bulletin&rft.au=Kryukov,%20A.%20P.&rft.date=2023-12-01&rft.volume=78&rft.issue=Suppl%201&rft.spage=S37&rft.epage=S44&rft.pages=S37-S44&rft.issn=0027-1349&rft.eissn=1934-8460&rft_id=info:doi/10.3103/S0027134923070184&rft_dat=%3Cproquest_cross%3E2916039293%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2916039293&rft_id=info:pmid/&rfr_iscdi=true