Unsupervised Machine Learning Methods for Determining Special Points of the Polymerase Chain Reaction Fluorescence Accumulation Curve

The polymerase chain reaction (PCR) method is a cyclic process based on the repeated copying of a certain fragment of DNA using enzymes in vitro. The main molecular mechanism of PCR is amplification, that is, the accumulation of copies of the selected nucleotide sequence. A real-time polymerase chai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Moscow University physics bulletin 2023-12, Vol.78 (Suppl 1), p.S169-S179
Hauptverfasser: Orekhov, A. V., Potekhina, M. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page S179
container_issue Suppl 1
container_start_page S169
container_title Moscow University physics bulletin
container_volume 78
creator Orekhov, A. V.
Potekhina, M. A.
description The polymerase chain reaction (PCR) method is a cyclic process based on the repeated copying of a certain fragment of DNA using enzymes in vitro. The main molecular mechanism of PCR is amplification, that is, the accumulation of copies of the selected nucleotide sequence. A real-time polymerase chain reaction, which is one of the varieties of the PCR method, allows determining not only the presence of the target nucleotide sequence in the sample, but also measuring the number of its copies. The efficiency of a real-time polymerase chain reaction is characterized by the exponential section of the fluorescence accumulation curve (PCR kinetic curve). This curve consists of a baseline, an exponential phase and a plateau phase. Of both theoretical and practical interest is the analytical determination of the moments of the transition of the PCR kinetic curve from linear to exponential growth, and then reaching a plateau. Unsupervised machine learning methods can be used to solve this problem. If we consider amplification as a quasi-deterministic discrete random process, for which the fluorescence accumulation curves are monotonically increasing trajectories, then the moments of the transition from the baseline to the exponential phase and from the exponential phase to the plateau phase are trajectory anomalies. Their detection is possible with the help of quadratic forms of approximation-estimation tests.
doi_str_mv 10.3103/S0027134923070238
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2916039263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2916039263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-3f9c86038ad8106db883489c700238e6c5266c97352b60951469f22cdc7a25283</originalsourceid><addsrcrecordid>eNp1UN1KwzAUDqLgnD6AdwGvq_lp0-RyTKfCRHHuumTp6ZbRJTNpB3sA39t2E7wQrw7nfH-cD6FrSm45JfxuRgjLKU8V4yQnjMsTNKCKp4lMBTlFgx5OevwcXcS4JiQTjKsB-pq72G4h7GyEEr9os7IO8BR0cNYt8Qs0K19GXPmA76GBsLGH-2wLxuoav3nrmoh9hZsVdFu930DQEfB4pa3D76BNY73Dk7r1AaIBZwCPjGk3ba0PyLgNO7hEZ5WuI1z9zCGaTx4-xk_J9PXxeTyaJoYJ2SS8UkYKwqUuJSWiXEjJU6lMTvqPQZiMCWFUzjO2EERlNBWqYsyUJtcsY5IP0c3Rdxv8ZwuxKda-Da6LLJiinbNigncsemSZ4GMMUBXbYDc67AtKir7t4k_bnYYdNbHjuiWEX-f_Rd_GkYGE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2916039263</pqid></control><display><type>article</type><title>Unsupervised Machine Learning Methods for Determining Special Points of the Polymerase Chain Reaction Fluorescence Accumulation Curve</title><source>Springer Online Journals Complete</source><creator>Orekhov, A. V. ; Potekhina, M. A.</creator><creatorcontrib>Orekhov, A. V. ; Potekhina, M. A.</creatorcontrib><description>The polymerase chain reaction (PCR) method is a cyclic process based on the repeated copying of a certain fragment of DNA using enzymes in vitro. The main molecular mechanism of PCR is amplification, that is, the accumulation of copies of the selected nucleotide sequence. A real-time polymerase chain reaction, which is one of the varieties of the PCR method, allows determining not only the presence of the target nucleotide sequence in the sample, but also measuring the number of its copies. The efficiency of a real-time polymerase chain reaction is characterized by the exponential section of the fluorescence accumulation curve (PCR kinetic curve). This curve consists of a baseline, an exponential phase and a plateau phase. Of both theoretical and practical interest is the analytical determination of the moments of the transition of the PCR kinetic curve from linear to exponential growth, and then reaching a plateau. Unsupervised machine learning methods can be used to solve this problem. If we consider amplification as a quasi-deterministic discrete random process, for which the fluorescence accumulation curves are monotonically increasing trajectories, then the moments of the transition from the baseline to the exponential phase and from the exponential phase to the plateau phase are trajectory anomalies. Their detection is possible with the help of quadratic forms of approximation-estimation tests.</description><identifier>ISSN: 0027-1349</identifier><identifier>EISSN: 1934-8460</identifier><identifier>DOI: 10.3103/S0027134923070238</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Accumulation ; Amplification ; Anomalies ; Copying ; Fluorescence ; Machine learning ; Machine Learning in Natural Sciences ; Mathematical and Computational Physics ; Nucleotides ; Physics ; Physics and Astronomy ; Polymerase chain reaction ; Quadratic forms ; Random processes ; Real time ; Theoretical ; Unsupervised learning</subject><ispartof>Moscow University physics bulletin, 2023-12, Vol.78 (Suppl 1), p.S169-S179</ispartof><rights>Allerton Press, Inc. 2023</rights><rights>Allerton Press, Inc. 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-3f9c86038ad8106db883489c700238e6c5266c97352b60951469f22cdc7a25283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S0027134923070238$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S0027134923070238$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Orekhov, A. V.</creatorcontrib><creatorcontrib>Potekhina, M. A.</creatorcontrib><title>Unsupervised Machine Learning Methods for Determining Special Points of the Polymerase Chain Reaction Fluorescence Accumulation Curve</title><title>Moscow University physics bulletin</title><addtitle>Moscow Univ. Phys</addtitle><description>The polymerase chain reaction (PCR) method is a cyclic process based on the repeated copying of a certain fragment of DNA using enzymes in vitro. The main molecular mechanism of PCR is amplification, that is, the accumulation of copies of the selected nucleotide sequence. A real-time polymerase chain reaction, which is one of the varieties of the PCR method, allows determining not only the presence of the target nucleotide sequence in the sample, but also measuring the number of its copies. The efficiency of a real-time polymerase chain reaction is characterized by the exponential section of the fluorescence accumulation curve (PCR kinetic curve). This curve consists of a baseline, an exponential phase and a plateau phase. Of both theoretical and practical interest is the analytical determination of the moments of the transition of the PCR kinetic curve from linear to exponential growth, and then reaching a plateau. Unsupervised machine learning methods can be used to solve this problem. If we consider amplification as a quasi-deterministic discrete random process, for which the fluorescence accumulation curves are monotonically increasing trajectories, then the moments of the transition from the baseline to the exponential phase and from the exponential phase to the plateau phase are trajectory anomalies. Their detection is possible with the help of quadratic forms of approximation-estimation tests.</description><subject>Accumulation</subject><subject>Amplification</subject><subject>Anomalies</subject><subject>Copying</subject><subject>Fluorescence</subject><subject>Machine learning</subject><subject>Machine Learning in Natural Sciences</subject><subject>Mathematical and Computational Physics</subject><subject>Nucleotides</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polymerase chain reaction</subject><subject>Quadratic forms</subject><subject>Random processes</subject><subject>Real time</subject><subject>Theoretical</subject><subject>Unsupervised learning</subject><issn>0027-1349</issn><issn>1934-8460</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UN1KwzAUDqLgnD6AdwGvq_lp0-RyTKfCRHHuumTp6ZbRJTNpB3sA39t2E7wQrw7nfH-cD6FrSm45JfxuRgjLKU8V4yQnjMsTNKCKp4lMBTlFgx5OevwcXcS4JiQTjKsB-pq72G4h7GyEEr9os7IO8BR0cNYt8Qs0K19GXPmA76GBsLGH-2wLxuoav3nrmoh9hZsVdFu930DQEfB4pa3D76BNY73Dk7r1AaIBZwCPjGk3ba0PyLgNO7hEZ5WuI1z9zCGaTx4-xk_J9PXxeTyaJoYJ2SS8UkYKwqUuJSWiXEjJU6lMTvqPQZiMCWFUzjO2EERlNBWqYsyUJtcsY5IP0c3Rdxv8ZwuxKda-Da6LLJiinbNigncsemSZ4GMMUBXbYDc67AtKir7t4k_bnYYdNbHjuiWEX-f_Rd_GkYGE</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Orekhov, A. V.</creator><creator>Potekhina, M. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231201</creationdate><title>Unsupervised Machine Learning Methods for Determining Special Points of the Polymerase Chain Reaction Fluorescence Accumulation Curve</title><author>Orekhov, A. V. ; Potekhina, M. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-3f9c86038ad8106db883489c700238e6c5266c97352b60951469f22cdc7a25283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accumulation</topic><topic>Amplification</topic><topic>Anomalies</topic><topic>Copying</topic><topic>Fluorescence</topic><topic>Machine learning</topic><topic>Machine Learning in Natural Sciences</topic><topic>Mathematical and Computational Physics</topic><topic>Nucleotides</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polymerase chain reaction</topic><topic>Quadratic forms</topic><topic>Random processes</topic><topic>Real time</topic><topic>Theoretical</topic><topic>Unsupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Orekhov, A. V.</creatorcontrib><creatorcontrib>Potekhina, M. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Moscow University physics bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Orekhov, A. V.</au><au>Potekhina, M. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unsupervised Machine Learning Methods for Determining Special Points of the Polymerase Chain Reaction Fluorescence Accumulation Curve</atitle><jtitle>Moscow University physics bulletin</jtitle><stitle>Moscow Univ. Phys</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>78</volume><issue>Suppl 1</issue><spage>S169</spage><epage>S179</epage><pages>S169-S179</pages><issn>0027-1349</issn><eissn>1934-8460</eissn><abstract>The polymerase chain reaction (PCR) method is a cyclic process based on the repeated copying of a certain fragment of DNA using enzymes in vitro. The main molecular mechanism of PCR is amplification, that is, the accumulation of copies of the selected nucleotide sequence. A real-time polymerase chain reaction, which is one of the varieties of the PCR method, allows determining not only the presence of the target nucleotide sequence in the sample, but also measuring the number of its copies. The efficiency of a real-time polymerase chain reaction is characterized by the exponential section of the fluorescence accumulation curve (PCR kinetic curve). This curve consists of a baseline, an exponential phase and a plateau phase. Of both theoretical and practical interest is the analytical determination of the moments of the transition of the PCR kinetic curve from linear to exponential growth, and then reaching a plateau. Unsupervised machine learning methods can be used to solve this problem. If we consider amplification as a quasi-deterministic discrete random process, for which the fluorescence accumulation curves are monotonically increasing trajectories, then the moments of the transition from the baseline to the exponential phase and from the exponential phase to the plateau phase are trajectory anomalies. Their detection is possible with the help of quadratic forms of approximation-estimation tests.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S0027134923070238</doi></addata></record>
fulltext fulltext
identifier ISSN: 0027-1349
ispartof Moscow University physics bulletin, 2023-12, Vol.78 (Suppl 1), p.S169-S179
issn 0027-1349
1934-8460
language eng
recordid cdi_proquest_journals_2916039263
source Springer Online Journals Complete
subjects Accumulation
Amplification
Anomalies
Copying
Fluorescence
Machine learning
Machine Learning in Natural Sciences
Mathematical and Computational Physics
Nucleotides
Physics
Physics and Astronomy
Polymerase chain reaction
Quadratic forms
Random processes
Real time
Theoretical
Unsupervised learning
title Unsupervised Machine Learning Methods for Determining Special Points of the Polymerase Chain Reaction Fluorescence Accumulation Curve
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T21%3A32%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unsupervised%20Machine%20Learning%20Methods%20for%20Determining%20Special%20Points%20of%20the%20Polymerase%20Chain%20Reaction%20Fluorescence%20Accumulation%20Curve&rft.jtitle=Moscow%20University%20physics%20bulletin&rft.au=Orekhov,%20A.%20V.&rft.date=2023-12-01&rft.volume=78&rft.issue=Suppl%201&rft.spage=S169&rft.epage=S179&rft.pages=S169-S179&rft.issn=0027-1349&rft.eissn=1934-8460&rft_id=info:doi/10.3103/S0027134923070238&rft_dat=%3Cproquest_cross%3E2916039263%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2916039263&rft_id=info:pmid/&rfr_iscdi=true