Enhancement of Heat Transfer in a Tube Channel of a Tubular Heat Exchanger

Thermal engineering experiments were carried out with laboratory water-to-water tube-in-tube heat exchangers of the same design parameters with smooth and profiled inner tubes. The tubes were profiled by confuser–diffuser constrictions of the flow section of the inner channel, which were formed by t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical foundations of chemical engineering 2023-10, Vol.57 (5), p.869-875
Hauptverfasser: Konoplev, A. A., Rytov, B. L., Berlin, Al. Al, Romanov, S. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 875
container_issue 5
container_start_page 869
container_title Theoretical foundations of chemical engineering
container_volume 57
creator Konoplev, A. A.
Rytov, B. L.
Berlin, Al. Al
Romanov, S. V.
description Thermal engineering experiments were carried out with laboratory water-to-water tube-in-tube heat exchangers of the same design parameters with smooth and profiled inner tubes. The tubes were profiled by confuser–diffuser constrictions of the flow section of the inner channel, which were formed by the deformation of their walls and placed along the length at a step that was constant and equal for all profiled tubes. The obtained results showed a dependence of the heat transfer enhancement in the tube channel on the Reynolds and Prandtl numbers, with the dependence on the latter being much stronger than that on the former, at least in cases where the heat carrier is water.
doi_str_mv 10.1134/S0040579523050433
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2916039023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2916039023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-400b3038474fd5f85a248df8d3cdfff3fcbe7d060f9b000b897ddeeda101eecb3</originalsourceid><addsrcrecordid>eNp1kEFLxDAQhYMouK7-AG8Bz9VJk7bJUZbVVRY8WM8lTSa6y266Ji3ovze1ggfxNDDvezPzhpBLBteMcXHzDCCgqFSRcyhAcH5EZqwEmXHB2TGZjXI26qfkLMYtAKiyVDPyuPRv2hvco-9p5-gKdU_roH10GOjGU03roUW6SJTH3Yh8d4adDhO8_DBJe8VwTk6c3kW8-Klz8nK3rBerbP10_7C4XWcmL2WfCYCWA5eiEs4WThY6F9I6abmxzjnuTIuVhRKcatOZrVSVtYhWM2CIpuVzcjXNPYTufcDYN9tuCD6tbHKVMnMFOU8UmygTuhgDuuYQNnsdPhsGzfiy5s_LkiefPDGxY6Tfyf-bvgCHBGxu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2916039023</pqid></control><display><type>article</type><title>Enhancement of Heat Transfer in a Tube Channel of a Tubular Heat Exchanger</title><source>SpringerLink Journals - AutoHoldings</source><creator>Konoplev, A. A. ; Rytov, B. L. ; Berlin, Al. Al ; Romanov, S. V.</creator><creatorcontrib>Konoplev, A. A. ; Rytov, B. L. ; Berlin, Al. Al ; Romanov, S. V.</creatorcontrib><description>Thermal engineering experiments were carried out with laboratory water-to-water tube-in-tube heat exchangers of the same design parameters with smooth and profiled inner tubes. The tubes were profiled by confuser–diffuser constrictions of the flow section of the inner channel, which were formed by the deformation of their walls and placed along the length at a step that was constant and equal for all profiled tubes. The obtained results showed a dependence of the heat transfer enhancement in the tube channel on the Reynolds and Prandtl numbers, with the dependence on the latter being much stronger than that on the former, at least in cases where the heat carrier is water.</description><identifier>ISSN: 0040-5795</identifier><identifier>EISSN: 1608-3431</identifier><identifier>DOI: 10.1134/S0040579523050433</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Chemistry ; Chemistry and Materials Science ; Design parameters ; Diffusers ; Heat transfer ; Industrial Chemistry/Chemical Engineering ; Thermal engineering ; Tube heat exchangers ; Tubes</subject><ispartof>Theoretical foundations of chemical engineering, 2023-10, Vol.57 (5), p.869-875</ispartof><rights>Pleiades Publishing, Ltd. 2023. ISSN 0040-5795, Theoretical Foundations of Chemical Engineering, 2023, Vol. 57, No. 5, pp. 869–875. © Pleiades Publishing, Ltd., 2023. Russian Text © The Author(s), 2023, published in Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2023, Vol. 57, No. 5, pp. 589–595.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-400b3038474fd5f85a248df8d3cdfff3fcbe7d060f9b000b897ddeeda101eecb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0040579523050433$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0040579523050433$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Konoplev, A. A.</creatorcontrib><creatorcontrib>Rytov, B. L.</creatorcontrib><creatorcontrib>Berlin, Al. Al</creatorcontrib><creatorcontrib>Romanov, S. V.</creatorcontrib><title>Enhancement of Heat Transfer in a Tube Channel of a Tubular Heat Exchanger</title><title>Theoretical foundations of chemical engineering</title><addtitle>Theor Found Chem Eng</addtitle><description>Thermal engineering experiments were carried out with laboratory water-to-water tube-in-tube heat exchangers of the same design parameters with smooth and profiled inner tubes. The tubes were profiled by confuser–diffuser constrictions of the flow section of the inner channel, which were formed by the deformation of their walls and placed along the length at a step that was constant and equal for all profiled tubes. The obtained results showed a dependence of the heat transfer enhancement in the tube channel on the Reynolds and Prandtl numbers, with the dependence on the latter being much stronger than that on the former, at least in cases where the heat carrier is water.</description><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Design parameters</subject><subject>Diffusers</subject><subject>Heat transfer</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Thermal engineering</subject><subject>Tube heat exchangers</subject><subject>Tubes</subject><issn>0040-5795</issn><issn>1608-3431</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLxDAQhYMouK7-AG8Bz9VJk7bJUZbVVRY8WM8lTSa6y266Ji3ovze1ggfxNDDvezPzhpBLBteMcXHzDCCgqFSRcyhAcH5EZqwEmXHB2TGZjXI26qfkLMYtAKiyVDPyuPRv2hvco-9p5-gKdU_roH10GOjGU03roUW6SJTH3Yh8d4adDhO8_DBJe8VwTk6c3kW8-Klz8nK3rBerbP10_7C4XWcmL2WfCYCWA5eiEs4WThY6F9I6abmxzjnuTIuVhRKcatOZrVSVtYhWM2CIpuVzcjXNPYTufcDYN9tuCD6tbHKVMnMFOU8UmygTuhgDuuYQNnsdPhsGzfiy5s_LkiefPDGxY6Tfyf-bvgCHBGxu</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Konoplev, A. A.</creator><creator>Rytov, B. L.</creator><creator>Berlin, Al. Al</creator><creator>Romanov, S. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231001</creationdate><title>Enhancement of Heat Transfer in a Tube Channel of a Tubular Heat Exchanger</title><author>Konoplev, A. A. ; Rytov, B. L. ; Berlin, Al. Al ; Romanov, S. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-400b3038474fd5f85a248df8d3cdfff3fcbe7d060f9b000b897ddeeda101eecb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Design parameters</topic><topic>Diffusers</topic><topic>Heat transfer</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Thermal engineering</topic><topic>Tube heat exchangers</topic><topic>Tubes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Konoplev, A. A.</creatorcontrib><creatorcontrib>Rytov, B. L.</creatorcontrib><creatorcontrib>Berlin, Al. Al</creatorcontrib><creatorcontrib>Romanov, S. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Theoretical foundations of chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Konoplev, A. A.</au><au>Rytov, B. L.</au><au>Berlin, Al. Al</au><au>Romanov, S. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancement of Heat Transfer in a Tube Channel of a Tubular Heat Exchanger</atitle><jtitle>Theoretical foundations of chemical engineering</jtitle><stitle>Theor Found Chem Eng</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>57</volume><issue>5</issue><spage>869</spage><epage>875</epage><pages>869-875</pages><issn>0040-5795</issn><eissn>1608-3431</eissn><abstract>Thermal engineering experiments were carried out with laboratory water-to-water tube-in-tube heat exchangers of the same design parameters with smooth and profiled inner tubes. The tubes were profiled by confuser–diffuser constrictions of the flow section of the inner channel, which were formed by the deformation of their walls and placed along the length at a step that was constant and equal for all profiled tubes. The obtained results showed a dependence of the heat transfer enhancement in the tube channel on the Reynolds and Prandtl numbers, with the dependence on the latter being much stronger than that on the former, at least in cases where the heat carrier is water.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0040579523050433</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-5795
ispartof Theoretical foundations of chemical engineering, 2023-10, Vol.57 (5), p.869-875
issn 0040-5795
1608-3431
language eng
recordid cdi_proquest_journals_2916039023
source SpringerLink Journals - AutoHoldings
subjects Chemistry
Chemistry and Materials Science
Design parameters
Diffusers
Heat transfer
Industrial Chemistry/Chemical Engineering
Thermal engineering
Tube heat exchangers
Tubes
title Enhancement of Heat Transfer in a Tube Channel of a Tubular Heat Exchanger
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T20%3A51%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancement%20of%20Heat%20Transfer%20in%20a%20Tube%20Channel%20of%20a%20Tubular%20Heat%20Exchanger&rft.jtitle=Theoretical%20foundations%20of%20chemical%20engineering&rft.au=Konoplev,%20A.%20A.&rft.date=2023-10-01&rft.volume=57&rft.issue=5&rft.spage=869&rft.epage=875&rft.pages=869-875&rft.issn=0040-5795&rft.eissn=1608-3431&rft_id=info:doi/10.1134/S0040579523050433&rft_dat=%3Cproquest_cross%3E2916039023%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2916039023&rft_id=info:pmid/&rfr_iscdi=true