New extensions of Hermite–Hadamard inequalities via generalized proportional fractional integral

The main aim this work is to give Hermite–Hadamard inequalities for convex functions via generalized proportional fractional integrals. We also obtained extensions of Hermite–Hadamard type inequalities for generalized proportional fractional integrals.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical methods for partial differential equations 2024-03, Vol.40 (2), p.n/a
Hauptverfasser: Mumcu, İlker, Set, Erhan, Akdemir, Ahmet Ocak, Jarad, Fahd
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page
container_title Numerical methods for partial differential equations
container_volume 40
creator Mumcu, İlker
Set, Erhan
Akdemir, Ahmet Ocak
Jarad, Fahd
description The main aim this work is to give Hermite–Hadamard inequalities for convex functions via generalized proportional fractional integrals. We also obtained extensions of Hermite–Hadamard type inequalities for generalized proportional fractional integrals.
doi_str_mv 10.1002/num.22767
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2915922349</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2915922349</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2977-6b2f47aaf095360f0335e68efc050a360020c3d41a1c79fb72ffd1a6006102473</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqWw4AaWWLFIO3Z-XC9RBRSplA2V2FluMq5cpUlrJ7RlxR24ISfBkG5Zzejpe6N5j5BrBgMGwIdVux5wLjJxQnoM5CjiCc9OSQ9EIiOWyrdzcuH9CoCxlMkeWcxwR3HfYOVtXXlaGzpBt7YNfn9-TXSh19oV1Fa4bXVpG4uevltNl1ihC8IHFnTj6k3tmmDXJTVO58fVVg0uA3RJzowuPV4dZ5_MH-5fx5No-vL4NL6bRjmXQkTZgptEaG1ApnEGBuI4xWyEJocUdFCAQx4XCdMsF9IsBDemYDroGQOeiLhPbrq74aFti75Rq7p14ROvuAzROY8TGajbjspd7b1DozbOhpAHxUD9VqhCheqvwsAOO3ZnSzz8D6rZ_Llz_ADonHT4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2915922349</pqid></control><display><type>article</type><title>New extensions of Hermite–Hadamard inequalities via generalized proportional fractional integral</title><source>Wiley Online Library All Journals</source><creator>Mumcu, İlker ; Set, Erhan ; Akdemir, Ahmet Ocak ; Jarad, Fahd</creator><creatorcontrib>Mumcu, İlker ; Set, Erhan ; Akdemir, Ahmet Ocak ; Jarad, Fahd</creatorcontrib><description>The main aim this work is to give Hermite–Hadamard inequalities for convex functions via generalized proportional fractional integrals. We also obtained extensions of Hermite–Hadamard type inequalities for generalized proportional fractional integrals.</description><identifier>ISSN: 0749-159X</identifier><identifier>EISSN: 1098-2426</identifier><identifier>DOI: 10.1002/num.22767</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>confluent hypergeometric function ; Fractional calculus ; Hermite–Hadamard inequalities ; Inequalities ; Integrals ; proportional fractional integral operators ; Riemann–Liouville fractional integral operators</subject><ispartof>Numerical methods for partial differential equations, 2024-03, Vol.40 (2), p.n/a</ispartof><rights>2021 Wiley Periodicals LLC.</rights><rights>2024 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2977-6b2f47aaf095360f0335e68efc050a360020c3d41a1c79fb72ffd1a6006102473</citedby><cites>FETCH-LOGICAL-c2977-6b2f47aaf095360f0335e68efc050a360020c3d41a1c79fb72ffd1a6006102473</cites><orcidid>0000-0002-3303-0623 ; 0000-0003-2466-0508</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnum.22767$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnum.22767$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Mumcu, İlker</creatorcontrib><creatorcontrib>Set, Erhan</creatorcontrib><creatorcontrib>Akdemir, Ahmet Ocak</creatorcontrib><creatorcontrib>Jarad, Fahd</creatorcontrib><title>New extensions of Hermite–Hadamard inequalities via generalized proportional fractional integral</title><title>Numerical methods for partial differential equations</title><description>The main aim this work is to give Hermite–Hadamard inequalities for convex functions via generalized proportional fractional integrals. We also obtained extensions of Hermite–Hadamard type inequalities for generalized proportional fractional integrals.</description><subject>confluent hypergeometric function</subject><subject>Fractional calculus</subject><subject>Hermite–Hadamard inequalities</subject><subject>Inequalities</subject><subject>Integrals</subject><subject>proportional fractional integral operators</subject><subject>Riemann–Liouville fractional integral operators</subject><issn>0749-159X</issn><issn>1098-2426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhS0EEqWw4AaWWLFIO3Z-XC9RBRSplA2V2FluMq5cpUlrJ7RlxR24ISfBkG5Zzejpe6N5j5BrBgMGwIdVux5wLjJxQnoM5CjiCc9OSQ9EIiOWyrdzcuH9CoCxlMkeWcxwR3HfYOVtXXlaGzpBt7YNfn9-TXSh19oV1Fa4bXVpG4uevltNl1ihC8IHFnTj6k3tmmDXJTVO58fVVg0uA3RJzowuPV4dZ5_MH-5fx5No-vL4NL6bRjmXQkTZgptEaG1ApnEGBuI4xWyEJocUdFCAQx4XCdMsF9IsBDemYDroGQOeiLhPbrq74aFti75Rq7p14ROvuAzROY8TGajbjspd7b1DozbOhpAHxUD9VqhCheqvwsAOO3ZnSzz8D6rZ_Llz_ADonHT4</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>Mumcu, İlker</creator><creator>Set, Erhan</creator><creator>Akdemir, Ahmet Ocak</creator><creator>Jarad, Fahd</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3303-0623</orcidid><orcidid>https://orcid.org/0000-0003-2466-0508</orcidid></search><sort><creationdate>202403</creationdate><title>New extensions of Hermite–Hadamard inequalities via generalized proportional fractional integral</title><author>Mumcu, İlker ; Set, Erhan ; Akdemir, Ahmet Ocak ; Jarad, Fahd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2977-6b2f47aaf095360f0335e68efc050a360020c3d41a1c79fb72ffd1a6006102473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>confluent hypergeometric function</topic><topic>Fractional calculus</topic><topic>Hermite–Hadamard inequalities</topic><topic>Inequalities</topic><topic>Integrals</topic><topic>proportional fractional integral operators</topic><topic>Riemann–Liouville fractional integral operators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mumcu, İlker</creatorcontrib><creatorcontrib>Set, Erhan</creatorcontrib><creatorcontrib>Akdemir, Ahmet Ocak</creatorcontrib><creatorcontrib>Jarad, Fahd</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical methods for partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mumcu, İlker</au><au>Set, Erhan</au><au>Akdemir, Ahmet Ocak</au><au>Jarad, Fahd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New extensions of Hermite–Hadamard inequalities via generalized proportional fractional integral</atitle><jtitle>Numerical methods for partial differential equations</jtitle><date>2024-03</date><risdate>2024</risdate><volume>40</volume><issue>2</issue><epage>n/a</epage><issn>0749-159X</issn><eissn>1098-2426</eissn><abstract>The main aim this work is to give Hermite–Hadamard inequalities for convex functions via generalized proportional fractional integrals. We also obtained extensions of Hermite–Hadamard type inequalities for generalized proportional fractional integrals.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/num.22767</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-3303-0623</orcidid><orcidid>https://orcid.org/0000-0003-2466-0508</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0749-159X
ispartof Numerical methods for partial differential equations, 2024-03, Vol.40 (2), p.n/a
issn 0749-159X
1098-2426
language eng
recordid cdi_proquest_journals_2915922349
source Wiley Online Library All Journals
subjects confluent hypergeometric function
Fractional calculus
Hermite–Hadamard inequalities
Inequalities
Integrals
proportional fractional integral operators
Riemann–Liouville fractional integral operators
title New extensions of Hermite–Hadamard inequalities via generalized proportional fractional integral
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T11%3A46%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20extensions%20of%20Hermite%E2%80%93Hadamard%20inequalities%20via%20generalized%20proportional%20fractional%20integral&rft.jtitle=Numerical%20methods%20for%20partial%20differential%20equations&rft.au=Mumcu,%20%C4%B0lker&rft.date=2024-03&rft.volume=40&rft.issue=2&rft.epage=n/a&rft.issn=0749-159X&rft.eissn=1098-2426&rft_id=info:doi/10.1002/num.22767&rft_dat=%3Cproquest_cross%3E2915922349%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2915922349&rft_id=info:pmid/&rfr_iscdi=true