A Fock space approach to the theory of kernel functions
In this paper, we give a new approach to the theory of kernel functions. Our method is based on the structure of Fock spaces. As its applications, two non-Euclidean examples of strictly positive kernel functions are given. Moreover, we give a new proof of the universal approximation theorem for Gaus...
Gespeichert in:
Veröffentlicht in: | Positivity : an international journal devoted to the theory and applications of positivity in analysis 2024-02, Vol.28 (1), p.9, Article 9 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 9 |
container_title | Positivity : an international journal devoted to the theory and applications of positivity in analysis |
container_volume | 28 |
creator | Seto, Michio |
description | In this paper, we give a new approach to the theory of kernel functions. Our method is based on the structure of Fock spaces. As its applications, two non-Euclidean examples of strictly positive kernel functions are given. Moreover, we give a new proof of the universal approximation theorem for Gaussian type kernels. |
doi_str_mv | 10.1007/s11117-023-01028-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2915807200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2915807200</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-36d3552f5381dba823617b891b0a3caac31b29c8ff9dcb1c37a6cd5a9499612a3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPAc3Qm6W6SYylWhYIXPYdsNmv_uVmTXWi_vakreHNgmDm892b4EXKLcI8A8iFhLsmACwYIXLHDGZlgITnTXOF53oUqGHLNL8lVSlvIKpjBhMg5XQa3o6mzzlPbdTFYt6Z9oP3anzrEIw0N3fnY-j1thtb1m9Cma3LR2H3yN79zSt6Xj2-LZ7Z6fXpZzFfMcQk9E2UtioI3hVBYV1ZxUaKslMYKrHDWOoEV1041ja5dhU5IW7q6sHqmdYnciim5G3PzY1-DT73ZhiG2-aThGgsFkgNkFR9VLoaUom9MFzefNh4NgjkBMiMgkwGZH0DmkE1iNKUsbj98_Iv-x_UN5aVntA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2915807200</pqid></control><display><type>article</type><title>A Fock space approach to the theory of kernel functions</title><source>Springer Online Journals</source><creator>Seto, Michio</creator><creatorcontrib>Seto, Michio</creatorcontrib><description>In this paper, we give a new approach to the theory of kernel functions. Our method is based on the structure of Fock spaces. As its applications, two non-Euclidean examples of strictly positive kernel functions are given. Moreover, we give a new proof of the universal approximation theorem for Gaussian type kernels.</description><identifier>ISSN: 1385-1292</identifier><identifier>EISSN: 1572-9281</identifier><identifier>DOI: 10.1007/s11117-023-01028-x</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algebra ; Approximation ; Calculus of Variations and Optimal Control; Optimization ; Construction ; Econometrics ; Fourier Analysis ; Hilbert space ; Kernel functions ; Mathematics ; Mathematics and Statistics ; Operator Theory ; Potential Theory</subject><ispartof>Positivity : an international journal devoted to the theory and applications of positivity in analysis, 2024-02, Vol.28 (1), p.9, Article 9</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-36d3552f5381dba823617b891b0a3caac31b29c8ff9dcb1c37a6cd5a9499612a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11117-023-01028-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11117-023-01028-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Seto, Michio</creatorcontrib><title>A Fock space approach to the theory of kernel functions</title><title>Positivity : an international journal devoted to the theory and applications of positivity in analysis</title><addtitle>Positivity</addtitle><description>In this paper, we give a new approach to the theory of kernel functions. Our method is based on the structure of Fock spaces. As its applications, two non-Euclidean examples of strictly positive kernel functions are given. Moreover, we give a new proof of the universal approximation theorem for Gaussian type kernels.</description><subject>Algebra</subject><subject>Approximation</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Construction</subject><subject>Econometrics</subject><subject>Fourier Analysis</subject><subject>Hilbert space</subject><subject>Kernel functions</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operator Theory</subject><subject>Potential Theory</subject><issn>1385-1292</issn><issn>1572-9281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwFPAc3Qm6W6SYylWhYIXPYdsNmv_uVmTXWi_vakreHNgmDm892b4EXKLcI8A8iFhLsmACwYIXLHDGZlgITnTXOF53oUqGHLNL8lVSlvIKpjBhMg5XQa3o6mzzlPbdTFYt6Z9oP3anzrEIw0N3fnY-j1thtb1m9Cma3LR2H3yN79zSt6Xj2-LZ7Z6fXpZzFfMcQk9E2UtioI3hVBYV1ZxUaKslMYKrHDWOoEV1041ja5dhU5IW7q6sHqmdYnciim5G3PzY1-DT73ZhiG2-aThGgsFkgNkFR9VLoaUom9MFzefNh4NgjkBMiMgkwGZH0DmkE1iNKUsbj98_Iv-x_UN5aVntA</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Seto, Michio</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20240201</creationdate><title>A Fock space approach to the theory of kernel functions</title><author>Seto, Michio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-36d3552f5381dba823617b891b0a3caac31b29c8ff9dcb1c37a6cd5a9499612a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Approximation</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Construction</topic><topic>Econometrics</topic><topic>Fourier Analysis</topic><topic>Hilbert space</topic><topic>Kernel functions</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operator Theory</topic><topic>Potential Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seto, Michio</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Positivity : an international journal devoted to the theory and applications of positivity in analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seto, Michio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Fock space approach to the theory of kernel functions</atitle><jtitle>Positivity : an international journal devoted to the theory and applications of positivity in analysis</jtitle><stitle>Positivity</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>28</volume><issue>1</issue><spage>9</spage><pages>9-</pages><artnum>9</artnum><issn>1385-1292</issn><eissn>1572-9281</eissn><abstract>In this paper, we give a new approach to the theory of kernel functions. Our method is based on the structure of Fock spaces. As its applications, two non-Euclidean examples of strictly positive kernel functions are given. Moreover, we give a new proof of the universal approximation theorem for Gaussian type kernels.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11117-023-01028-x</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1385-1292 |
ispartof | Positivity : an international journal devoted to the theory and applications of positivity in analysis, 2024-02, Vol.28 (1), p.9, Article 9 |
issn | 1385-1292 1572-9281 |
language | eng |
recordid | cdi_proquest_journals_2915807200 |
source | Springer Online Journals |
subjects | Algebra Approximation Calculus of Variations and Optimal Control Optimization Construction Econometrics Fourier Analysis Hilbert space Kernel functions Mathematics Mathematics and Statistics Operator Theory Potential Theory |
title | A Fock space approach to the theory of kernel functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A06%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Fock%20space%20approach%20to%20the%20theory%20of%20kernel%20functions&rft.jtitle=Positivity%20:%20an%20international%20journal%20devoted%20to%20the%20theory%20and%20applications%20of%20positivity%20in%20analysis&rft.au=Seto,%20Michio&rft.date=2024-02-01&rft.volume=28&rft.issue=1&rft.spage=9&rft.pages=9-&rft.artnum=9&rft.issn=1385-1292&rft.eissn=1572-9281&rft_id=info:doi/10.1007/s11117-023-01028-x&rft_dat=%3Cproquest_cross%3E2915807200%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2915807200&rft_id=info:pmid/&rfr_iscdi=true |