A Fock space approach to the theory of kernel functions

In this paper, we give a new approach to the theory of kernel functions. Our method is based on the structure of Fock spaces. As its applications, two non-Euclidean examples of strictly positive kernel functions are given. Moreover, we give a new proof of the universal approximation theorem for Gaus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Positivity : an international journal devoted to the theory and applications of positivity in analysis 2024-02, Vol.28 (1), p.9, Article 9
1. Verfasser: Seto, Michio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 9
container_title Positivity : an international journal devoted to the theory and applications of positivity in analysis
container_volume 28
creator Seto, Michio
description In this paper, we give a new approach to the theory of kernel functions. Our method is based on the structure of Fock spaces. As its applications, two non-Euclidean examples of strictly positive kernel functions are given. Moreover, we give a new proof of the universal approximation theorem for Gaussian type kernels.
doi_str_mv 10.1007/s11117-023-01028-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2915807200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2915807200</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-36d3552f5381dba823617b891b0a3caac31b29c8ff9dcb1c37a6cd5a9499612a3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPAc3Qm6W6SYylWhYIXPYdsNmv_uVmTXWi_vakreHNgmDm892b4EXKLcI8A8iFhLsmACwYIXLHDGZlgITnTXOF53oUqGHLNL8lVSlvIKpjBhMg5XQa3o6mzzlPbdTFYt6Z9oP3anzrEIw0N3fnY-j1thtb1m9Cma3LR2H3yN79zSt6Xj2-LZ7Z6fXpZzFfMcQk9E2UtioI3hVBYV1ZxUaKslMYKrHDWOoEV1041ja5dhU5IW7q6sHqmdYnciim5G3PzY1-DT73ZhiG2-aThGgsFkgNkFR9VLoaUom9MFzefNh4NgjkBMiMgkwGZH0DmkE1iNKUsbj98_Iv-x_UN5aVntA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2915807200</pqid></control><display><type>article</type><title>A Fock space approach to the theory of kernel functions</title><source>Springer Online Journals</source><creator>Seto, Michio</creator><creatorcontrib>Seto, Michio</creatorcontrib><description>In this paper, we give a new approach to the theory of kernel functions. Our method is based on the structure of Fock spaces. As its applications, two non-Euclidean examples of strictly positive kernel functions are given. Moreover, we give a new proof of the universal approximation theorem for Gaussian type kernels.</description><identifier>ISSN: 1385-1292</identifier><identifier>EISSN: 1572-9281</identifier><identifier>DOI: 10.1007/s11117-023-01028-x</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algebra ; Approximation ; Calculus of Variations and Optimal Control; Optimization ; Construction ; Econometrics ; Fourier Analysis ; Hilbert space ; Kernel functions ; Mathematics ; Mathematics and Statistics ; Operator Theory ; Potential Theory</subject><ispartof>Positivity : an international journal devoted to the theory and applications of positivity in analysis, 2024-02, Vol.28 (1), p.9, Article 9</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-36d3552f5381dba823617b891b0a3caac31b29c8ff9dcb1c37a6cd5a9499612a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11117-023-01028-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11117-023-01028-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Seto, Michio</creatorcontrib><title>A Fock space approach to the theory of kernel functions</title><title>Positivity : an international journal devoted to the theory and applications of positivity in analysis</title><addtitle>Positivity</addtitle><description>In this paper, we give a new approach to the theory of kernel functions. Our method is based on the structure of Fock spaces. As its applications, two non-Euclidean examples of strictly positive kernel functions are given. Moreover, we give a new proof of the universal approximation theorem for Gaussian type kernels.</description><subject>Algebra</subject><subject>Approximation</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Construction</subject><subject>Econometrics</subject><subject>Fourier Analysis</subject><subject>Hilbert space</subject><subject>Kernel functions</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operator Theory</subject><subject>Potential Theory</subject><issn>1385-1292</issn><issn>1572-9281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwFPAc3Qm6W6SYylWhYIXPYdsNmv_uVmTXWi_vakreHNgmDm892b4EXKLcI8A8iFhLsmACwYIXLHDGZlgITnTXOF53oUqGHLNL8lVSlvIKpjBhMg5XQa3o6mzzlPbdTFYt6Z9oP3anzrEIw0N3fnY-j1thtb1m9Cma3LR2H3yN79zSt6Xj2-LZ7Z6fXpZzFfMcQk9E2UtioI3hVBYV1ZxUaKslMYKrHDWOoEV1041ja5dhU5IW7q6sHqmdYnciim5G3PzY1-DT73ZhiG2-aThGgsFkgNkFR9VLoaUom9MFzefNh4NgjkBMiMgkwGZH0DmkE1iNKUsbj98_Iv-x_UN5aVntA</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Seto, Michio</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20240201</creationdate><title>A Fock space approach to the theory of kernel functions</title><author>Seto, Michio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-36d3552f5381dba823617b891b0a3caac31b29c8ff9dcb1c37a6cd5a9499612a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Approximation</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Construction</topic><topic>Econometrics</topic><topic>Fourier Analysis</topic><topic>Hilbert space</topic><topic>Kernel functions</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operator Theory</topic><topic>Potential Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seto, Michio</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Positivity : an international journal devoted to the theory and applications of positivity in analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seto, Michio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Fock space approach to the theory of kernel functions</atitle><jtitle>Positivity : an international journal devoted to the theory and applications of positivity in analysis</jtitle><stitle>Positivity</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>28</volume><issue>1</issue><spage>9</spage><pages>9-</pages><artnum>9</artnum><issn>1385-1292</issn><eissn>1572-9281</eissn><abstract>In this paper, we give a new approach to the theory of kernel functions. Our method is based on the structure of Fock spaces. As its applications, two non-Euclidean examples of strictly positive kernel functions are given. Moreover, we give a new proof of the universal approximation theorem for Gaussian type kernels.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11117-023-01028-x</doi></addata></record>
fulltext fulltext
identifier ISSN: 1385-1292
ispartof Positivity : an international journal devoted to the theory and applications of positivity in analysis, 2024-02, Vol.28 (1), p.9, Article 9
issn 1385-1292
1572-9281
language eng
recordid cdi_proquest_journals_2915807200
source Springer Online Journals
subjects Algebra
Approximation
Calculus of Variations and Optimal Control
Optimization
Construction
Econometrics
Fourier Analysis
Hilbert space
Kernel functions
Mathematics
Mathematics and Statistics
Operator Theory
Potential Theory
title A Fock space approach to the theory of kernel functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A06%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Fock%20space%20approach%20to%20the%20theory%20of%20kernel%20functions&rft.jtitle=Positivity%20:%20an%20international%20journal%20devoted%20to%20the%20theory%20and%20applications%20of%20positivity%20in%20analysis&rft.au=Seto,%20Michio&rft.date=2024-02-01&rft.volume=28&rft.issue=1&rft.spage=9&rft.pages=9-&rft.artnum=9&rft.issn=1385-1292&rft.eissn=1572-9281&rft_id=info:doi/10.1007/s11117-023-01028-x&rft_dat=%3Cproquest_cross%3E2915807200%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2915807200&rft_id=info:pmid/&rfr_iscdi=true