An energy-efficient multi-stage alternating optimization scheme for UAV-mounted mobile edge computing networks
As users have higher and higher requirements for the quality of experience, traditional cloud computing is gradually unable to meet the needs of user equipments. Hence mobile edge computing networks mounted by unmanned aerial vehicles are introduced to improve user experience and reduce energy consu...
Gespeichert in:
Veröffentlicht in: | Computing 2024, Vol.106 (1), p.57-80 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 80 |
---|---|
container_issue | 1 |
container_start_page | 57 |
container_title | Computing |
container_volume | 106 |
creator | Wang, Zhenqian Rong, Huigui |
description | As users have higher and higher requirements for the quality of experience, traditional cloud computing is gradually unable to meet the needs of user equipments. Hence mobile edge computing networks mounted by unmanned aerial vehicles are introduced to improve user experience and reduce energy consumption. However, most current work is based on neural networks, which require large amounts of labeled data or long training times. Given these challenges, this paper proposes an energy-efficient multi-stage alternating optimization scheme to reduce the weighted energy consumption of the entire network. We analyze the energy consumption of each device and formulate a non-convex optimization problem. Considering the impact of task offloading, resource allocation, and path planning on network energy consumption, we transform the energy consumption problem into three subproblems. And use the coordinate descent algorithm, interior point method, and successive convex approximation method to optimize them alternately. The simulation results show that the proposed optimization scheme can significantly reduce the network’s total energy consumption. |
doi_str_mv | 10.1007/s00607-023-01210-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2915779883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2915779883</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d30d058505c328678d91fe20b9fda3fb27482b779002bed828d690b75a768c1c3</originalsourceid><addsrcrecordid>eNp9kEtLBDEQhIMouD7-gKeA52gn2Zkkx0V8wYIXV7yFefSss84ka5JB9NcbXcGbp6ab-oquIuSMwwUHUJcRoATFQEgGXHBgZo_M-FyWrIBC7ZMZQD7OdfF8SI5i3ABkqTYz4haOosOw_mDYdX3To0t0nIbUs5iqNdJqSBhclXq3pn6b-rH_zIt3NDYvOCLtfKCrxRMb_eQStnT0dT8gxTazjR-30w_pML378BpPyEFXDRFPf-cxWd1cP17dseXD7f3VYskayU1irYQWCp1_b6TQpdKt4R0KqE3XVrKrhZprUStlcowaWy10WxqoVVGpUje8kcfkfOe7Df5twpjsxk85xhCtMLzIpNYyq8RO1QQfY8DObkM_VuHDcrDfvdpdrzaXZX96tSZDcgfFLHZrDH_W_1BfJFt8XA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2915779883</pqid></control><display><type>article</type><title>An energy-efficient multi-stage alternating optimization scheme for UAV-mounted mobile edge computing networks</title><source>SpringerNature Journals</source><creator>Wang, Zhenqian ; Rong, Huigui</creator><creatorcontrib>Wang, Zhenqian ; Rong, Huigui</creatorcontrib><description>As users have higher and higher requirements for the quality of experience, traditional cloud computing is gradually unable to meet the needs of user equipments. Hence mobile edge computing networks mounted by unmanned aerial vehicles are introduced to improve user experience and reduce energy consumption. However, most current work is based on neural networks, which require large amounts of labeled data or long training times. Given these challenges, this paper proposes an energy-efficient multi-stage alternating optimization scheme to reduce the weighted energy consumption of the entire network. We analyze the energy consumption of each device and formulate a non-convex optimization problem. Considering the impact of task offloading, resource allocation, and path planning on network energy consumption, we transform the energy consumption problem into three subproblems. And use the coordinate descent algorithm, interior point method, and successive convex approximation method to optimize them alternately. The simulation results show that the proposed optimization scheme can significantly reduce the network’s total energy consumption.</description><identifier>ISSN: 0010-485X</identifier><identifier>EISSN: 1436-5057</identifier><identifier>DOI: 10.1007/s00607-023-01210-9</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Algorithms ; Artificial Intelligence ; Cloud computing ; Computation offloading ; Computer Appl. in Administrative Data Processing ; Computer Communication Networks ; Computer Science ; Convexity ; Edge computing ; Energy consumption ; Information Systems Applications (incl.Internet) ; Mobile computing ; Neural networks ; Optimization ; Regular Paper ; Resource allocation ; Software Engineering ; Unmanned aerial vehicles ; User experience</subject><ispartof>Computing, 2024, Vol.106 (1), p.57-80</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d30d058505c328678d91fe20b9fda3fb27482b779002bed828d690b75a768c1c3</citedby><cites>FETCH-LOGICAL-c319t-d30d058505c328678d91fe20b9fda3fb27482b779002bed828d690b75a768c1c3</cites><orcidid>0000-0003-3312-1266</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00607-023-01210-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00607-023-01210-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Wang, Zhenqian</creatorcontrib><creatorcontrib>Rong, Huigui</creatorcontrib><title>An energy-efficient multi-stage alternating optimization scheme for UAV-mounted mobile edge computing networks</title><title>Computing</title><addtitle>Computing</addtitle><description>As users have higher and higher requirements for the quality of experience, traditional cloud computing is gradually unable to meet the needs of user equipments. Hence mobile edge computing networks mounted by unmanned aerial vehicles are introduced to improve user experience and reduce energy consumption. However, most current work is based on neural networks, which require large amounts of labeled data or long training times. Given these challenges, this paper proposes an energy-efficient multi-stage alternating optimization scheme to reduce the weighted energy consumption of the entire network. We analyze the energy consumption of each device and formulate a non-convex optimization problem. Considering the impact of task offloading, resource allocation, and path planning on network energy consumption, we transform the energy consumption problem into three subproblems. And use the coordinate descent algorithm, interior point method, and successive convex approximation method to optimize them alternately. The simulation results show that the proposed optimization scheme can significantly reduce the network’s total energy consumption.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Cloud computing</subject><subject>Computation offloading</subject><subject>Computer Appl. in Administrative Data Processing</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Convexity</subject><subject>Edge computing</subject><subject>Energy consumption</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Mobile computing</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Regular Paper</subject><subject>Resource allocation</subject><subject>Software Engineering</subject><subject>Unmanned aerial vehicles</subject><subject>User experience</subject><issn>0010-485X</issn><issn>1436-5057</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLBDEQhIMouD7-gKeA52gn2Zkkx0V8wYIXV7yFefSss84ka5JB9NcbXcGbp6ab-oquIuSMwwUHUJcRoATFQEgGXHBgZo_M-FyWrIBC7ZMZQD7OdfF8SI5i3ABkqTYz4haOosOw_mDYdX3To0t0nIbUs5iqNdJqSBhclXq3pn6b-rH_zIt3NDYvOCLtfKCrxRMb_eQStnT0dT8gxTazjR-30w_pML378BpPyEFXDRFPf-cxWd1cP17dseXD7f3VYskayU1irYQWCp1_b6TQpdKt4R0KqE3XVrKrhZprUStlcowaWy10WxqoVVGpUje8kcfkfOe7Df5twpjsxk85xhCtMLzIpNYyq8RO1QQfY8DObkM_VuHDcrDfvdpdrzaXZX96tSZDcgfFLHZrDH_W_1BfJFt8XA</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Wang, Zhenqian</creator><creator>Rong, Huigui</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3312-1266</orcidid></search><sort><creationdate>2024</creationdate><title>An energy-efficient multi-stage alternating optimization scheme for UAV-mounted mobile edge computing networks</title><author>Wang, Zhenqian ; Rong, Huigui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d30d058505c328678d91fe20b9fda3fb27482b779002bed828d690b75a768c1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Cloud computing</topic><topic>Computation offloading</topic><topic>Computer Appl. in Administrative Data Processing</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Convexity</topic><topic>Edge computing</topic><topic>Energy consumption</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Mobile computing</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Regular Paper</topic><topic>Resource allocation</topic><topic>Software Engineering</topic><topic>Unmanned aerial vehicles</topic><topic>User experience</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhenqian</creatorcontrib><creatorcontrib>Rong, Huigui</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhenqian</au><au>Rong, Huigui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An energy-efficient multi-stage alternating optimization scheme for UAV-mounted mobile edge computing networks</atitle><jtitle>Computing</jtitle><stitle>Computing</stitle><date>2024</date><risdate>2024</risdate><volume>106</volume><issue>1</issue><spage>57</spage><epage>80</epage><pages>57-80</pages><issn>0010-485X</issn><eissn>1436-5057</eissn><abstract>As users have higher and higher requirements for the quality of experience, traditional cloud computing is gradually unable to meet the needs of user equipments. Hence mobile edge computing networks mounted by unmanned aerial vehicles are introduced to improve user experience and reduce energy consumption. However, most current work is based on neural networks, which require large amounts of labeled data or long training times. Given these challenges, this paper proposes an energy-efficient multi-stage alternating optimization scheme to reduce the weighted energy consumption of the entire network. We analyze the energy consumption of each device and formulate a non-convex optimization problem. Considering the impact of task offloading, resource allocation, and path planning on network energy consumption, we transform the energy consumption problem into three subproblems. And use the coordinate descent algorithm, interior point method, and successive convex approximation method to optimize them alternately. The simulation results show that the proposed optimization scheme can significantly reduce the network’s total energy consumption.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00607-023-01210-9</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-3312-1266</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-485X |
ispartof | Computing, 2024, Vol.106 (1), p.57-80 |
issn | 0010-485X 1436-5057 |
language | eng |
recordid | cdi_proquest_journals_2915779883 |
source | SpringerNature Journals |
subjects | Algorithms Artificial Intelligence Cloud computing Computation offloading Computer Appl. in Administrative Data Processing Computer Communication Networks Computer Science Convexity Edge computing Energy consumption Information Systems Applications (incl.Internet) Mobile computing Neural networks Optimization Regular Paper Resource allocation Software Engineering Unmanned aerial vehicles User experience |
title | An energy-efficient multi-stage alternating optimization scheme for UAV-mounted mobile edge computing networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A01%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20energy-efficient%20multi-stage%20alternating%20optimization%20scheme%20for%20UAV-mounted%20mobile%20edge%20computing%20networks&rft.jtitle=Computing&rft.au=Wang,%20Zhenqian&rft.date=2024&rft.volume=106&rft.issue=1&rft.spage=57&rft.epage=80&rft.pages=57-80&rft.issn=0010-485X&rft.eissn=1436-5057&rft_id=info:doi/10.1007/s00607-023-01210-9&rft_dat=%3Cproquest_cross%3E2915779883%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2915779883&rft_id=info:pmid/&rfr_iscdi=true |