MIFI: MultI-Camera Feature Integration for Robust 3D Distracted Driver Activity Recognition
Distracted driver activity recognition plays a critical role in risk aversion-particularly beneficial in intelligent transportation systems. However, most existing methods make use of only the video from a single view and the difficulty-inconsistent issue is neglected. Different from them, in this w...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent transportation systems 2024-01, Vol.25 (1), p.338-348 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 348 |
---|---|
container_issue | 1 |
container_start_page | 338 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | 25 |
creator | Kuang, Jian Li, Wenjing Li, Fang Zhang, Jun Wu, Zhongcheng |
description | Distracted driver activity recognition plays a critical role in risk aversion-particularly beneficial in intelligent transportation systems. However, most existing methods make use of only the video from a single view and the difficulty-inconsistent issue is neglected. Different from them, in this work, we propose a novel MultI-camera Feature Integration (MIFI) approach for 3D distracted driver activity recognition by jointly modeling the data from different camera views and explicitly re-weighting examples based on their degree of difficulty. Our contributions are two-fold: (1) We propose a simple but effective multi-camera feature integration framework and provide three types of feature fusion techniques. (2) To address the difficulty-inconsistent problem in distracted driver activity recognition, a periodic learning method, named example re-weighting that can jointly learn the easy and hard samples, is presented. The experimental results on the 3MDAD dataset demonstrate that the proposed MIFI can consistently boost performance compared to single-view models. |
doi_str_mv | 10.1109/TITS.2023.3304317 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2915734978</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10226521</ieee_id><sourcerecordid>2915734978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-fe0ded0f361459f1d9e53a766ec662d48c9b50105541e5e52791e57814cf93f23</originalsourceid><addsrcrecordid>eNpNkE9Lw0AQxRdRsFY_gOBhwXPq_k2y3kprNdAi1HryELab2bKlTeruptBvb0J78PSG4b2Zxw-hR0pGlBL1sipWXyNGGB9xTgSn2RUaUCnzhBCaXvczE4kiktyiuxC23VZISgfoZ1HMile8aHexSCZ6D17jGejYesBFHWHjdXRNjW3j8bJZtyFiPsVTF6LXJkKFp94dweOxie7o4gkvwTSb2vWhe3Rj9S7Aw0WH6Hv2tpp8JPPP92IynieGiTQmFkgFFbE87TopSysFkussTcGkKatEbtRaEkqkFBQkSJapTrOcCmMVt4wP0fP57sE3vy2EWG6b1tfdy5IpKjMuVJZ3Lnp2Gd-E4MGWB-_22p9KSsqeYdkzLHuG5YVhl3k6ZxwA_PMzlkpG-R9y82wd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2915734978</pqid></control><display><type>article</type><title>MIFI: MultI-Camera Feature Integration for Robust 3D Distracted Driver Activity Recognition</title><source>IEEE Electronic Library (IEL)</source><creator>Kuang, Jian ; Li, Wenjing ; Li, Fang ; Zhang, Jun ; Wu, Zhongcheng</creator><creatorcontrib>Kuang, Jian ; Li, Wenjing ; Li, Fang ; Zhang, Jun ; Wu, Zhongcheng</creatorcontrib><description>Distracted driver activity recognition plays a critical role in risk aversion-particularly beneficial in intelligent transportation systems. However, most existing methods make use of only the video from a single view and the difficulty-inconsistent issue is neglected. Different from them, in this work, we propose a novel MultI-camera Feature Integration (MIFI) approach for 3D distracted driver activity recognition by jointly modeling the data from different camera views and explicitly re-weighting examples based on their degree of difficulty. Our contributions are two-fold: (1) We propose a simple but effective multi-camera feature integration framework and provide three types of feature fusion techniques. (2) To address the difficulty-inconsistent problem in distracted driver activity recognition, a periodic learning method, named example re-weighting that can jointly learn the easy and hard samples, is presented. The experimental results on the 3MDAD dataset demonstrate that the proposed MIFI can consistently boost performance compared to single-view models.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2023.3304317</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Activity recognition ; Behavioral sciences ; Cameras ; Distracted driver recognition ; Driver behavior ; example re-weighting ; Feature extraction ; Intelligent transportation systems ; multi-view feature learning ; Risk management ; Road accidents ; Road safety ; Three-dimensional displays ; Vehicles ; Weighting</subject><ispartof>IEEE transactions on intelligent transportation systems, 2024-01, Vol.25 (1), p.338-348</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-fe0ded0f361459f1d9e53a766ec662d48c9b50105541e5e52791e57814cf93f23</cites><orcidid>0000-0003-3201-6675</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10226521$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10226521$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kuang, Jian</creatorcontrib><creatorcontrib>Li, Wenjing</creatorcontrib><creatorcontrib>Li, Fang</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Wu, Zhongcheng</creatorcontrib><title>MIFI: MultI-Camera Feature Integration for Robust 3D Distracted Driver Activity Recognition</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Distracted driver activity recognition plays a critical role in risk aversion-particularly beneficial in intelligent transportation systems. However, most existing methods make use of only the video from a single view and the difficulty-inconsistent issue is neglected. Different from them, in this work, we propose a novel MultI-camera Feature Integration (MIFI) approach for 3D distracted driver activity recognition by jointly modeling the data from different camera views and explicitly re-weighting examples based on their degree of difficulty. Our contributions are two-fold: (1) We propose a simple but effective multi-camera feature integration framework and provide three types of feature fusion techniques. (2) To address the difficulty-inconsistent problem in distracted driver activity recognition, a periodic learning method, named example re-weighting that can jointly learn the easy and hard samples, is presented. The experimental results on the 3MDAD dataset demonstrate that the proposed MIFI can consistently boost performance compared to single-view models.</description><subject>Activity recognition</subject><subject>Behavioral sciences</subject><subject>Cameras</subject><subject>Distracted driver recognition</subject><subject>Driver behavior</subject><subject>example re-weighting</subject><subject>Feature extraction</subject><subject>Intelligent transportation systems</subject><subject>multi-view feature learning</subject><subject>Risk management</subject><subject>Road accidents</subject><subject>Road safety</subject><subject>Three-dimensional displays</subject><subject>Vehicles</subject><subject>Weighting</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9Lw0AQxRdRsFY_gOBhwXPq_k2y3kprNdAi1HryELab2bKlTeruptBvb0J78PSG4b2Zxw-hR0pGlBL1sipWXyNGGB9xTgSn2RUaUCnzhBCaXvczE4kiktyiuxC23VZISgfoZ1HMile8aHexSCZ6D17jGejYesBFHWHjdXRNjW3j8bJZtyFiPsVTF6LXJkKFp94dweOxie7o4gkvwTSb2vWhe3Rj9S7Aw0WH6Hv2tpp8JPPP92IynieGiTQmFkgFFbE87TopSysFkussTcGkKatEbtRaEkqkFBQkSJapTrOcCmMVt4wP0fP57sE3vy2EWG6b1tfdy5IpKjMuVJZ3Lnp2Gd-E4MGWB-_22p9KSsqeYdkzLHuG5YVhl3k6ZxwA_PMzlkpG-R9y82wd</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Kuang, Jian</creator><creator>Li, Wenjing</creator><creator>Li, Fang</creator><creator>Zhang, Jun</creator><creator>Wu, Zhongcheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3201-6675</orcidid></search><sort><creationdate>202401</creationdate><title>MIFI: MultI-Camera Feature Integration for Robust 3D Distracted Driver Activity Recognition</title><author>Kuang, Jian ; Li, Wenjing ; Li, Fang ; Zhang, Jun ; Wu, Zhongcheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-fe0ded0f361459f1d9e53a766ec662d48c9b50105541e5e52791e57814cf93f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Activity recognition</topic><topic>Behavioral sciences</topic><topic>Cameras</topic><topic>Distracted driver recognition</topic><topic>Driver behavior</topic><topic>example re-weighting</topic><topic>Feature extraction</topic><topic>Intelligent transportation systems</topic><topic>multi-view feature learning</topic><topic>Risk management</topic><topic>Road accidents</topic><topic>Road safety</topic><topic>Three-dimensional displays</topic><topic>Vehicles</topic><topic>Weighting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuang, Jian</creatorcontrib><creatorcontrib>Li, Wenjing</creatorcontrib><creatorcontrib>Li, Fang</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Wu, Zhongcheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kuang, Jian</au><au>Li, Wenjing</au><au>Li, Fang</au><au>Zhang, Jun</au><au>Wu, Zhongcheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MIFI: MultI-Camera Feature Integration for Robust 3D Distracted Driver Activity Recognition</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2024-01</date><risdate>2024</risdate><volume>25</volume><issue>1</issue><spage>338</spage><epage>348</epage><pages>338-348</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Distracted driver activity recognition plays a critical role in risk aversion-particularly beneficial in intelligent transportation systems. However, most existing methods make use of only the video from a single view and the difficulty-inconsistent issue is neglected. Different from them, in this work, we propose a novel MultI-camera Feature Integration (MIFI) approach for 3D distracted driver activity recognition by jointly modeling the data from different camera views and explicitly re-weighting examples based on their degree of difficulty. Our contributions are two-fold: (1) We propose a simple but effective multi-camera feature integration framework and provide three types of feature fusion techniques. (2) To address the difficulty-inconsistent problem in distracted driver activity recognition, a periodic learning method, named example re-weighting that can jointly learn the easy and hard samples, is presented. The experimental results on the 3MDAD dataset demonstrate that the proposed MIFI can consistently boost performance compared to single-view models.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2023.3304317</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3201-6675</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2024-01, Vol.25 (1), p.338-348 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_proquest_journals_2915734978 |
source | IEEE Electronic Library (IEL) |
subjects | Activity recognition Behavioral sciences Cameras Distracted driver recognition Driver behavior example re-weighting Feature extraction Intelligent transportation systems multi-view feature learning Risk management Road accidents Road safety Three-dimensional displays Vehicles Weighting |
title | MIFI: MultI-Camera Feature Integration for Robust 3D Distracted Driver Activity Recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A37%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MIFI:%20MultI-Camera%20Feature%20Integration%20for%20Robust%203D%20Distracted%20Driver%20Activity%20Recognition&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Kuang,%20Jian&rft.date=2024-01&rft.volume=25&rft.issue=1&rft.spage=338&rft.epage=348&rft.pages=338-348&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2023.3304317&rft_dat=%3Cproquest_RIE%3E2915734978%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2915734978&rft_id=info:pmid/&rft_ieee_id=10226521&rfr_iscdi=true |