MIFI: MultI-Camera Feature Integration for Robust 3D Distracted Driver Activity Recognition

Distracted driver activity recognition plays a critical role in risk aversion-particularly beneficial in intelligent transportation systems. However, most existing methods make use of only the video from a single view and the difficulty-inconsistent issue is neglected. Different from them, in this w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2024-01, Vol.25 (1), p.338-348
Hauptverfasser: Kuang, Jian, Li, Wenjing, Li, Fang, Zhang, Jun, Wu, Zhongcheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 348
container_issue 1
container_start_page 338
container_title IEEE transactions on intelligent transportation systems
container_volume 25
creator Kuang, Jian
Li, Wenjing
Li, Fang
Zhang, Jun
Wu, Zhongcheng
description Distracted driver activity recognition plays a critical role in risk aversion-particularly beneficial in intelligent transportation systems. However, most existing methods make use of only the video from a single view and the difficulty-inconsistent issue is neglected. Different from them, in this work, we propose a novel MultI-camera Feature Integration (MIFI) approach for 3D distracted driver activity recognition by jointly modeling the data from different camera views and explicitly re-weighting examples based on their degree of difficulty. Our contributions are two-fold: (1) We propose a simple but effective multi-camera feature integration framework and provide three types of feature fusion techniques. (2) To address the difficulty-inconsistent problem in distracted driver activity recognition, a periodic learning method, named example re-weighting that can jointly learn the easy and hard samples, is presented. The experimental results on the 3MDAD dataset demonstrate that the proposed MIFI can consistently boost performance compared to single-view models.
doi_str_mv 10.1109/TITS.2023.3304317
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2915734978</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10226521</ieee_id><sourcerecordid>2915734978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-fe0ded0f361459f1d9e53a766ec662d48c9b50105541e5e52791e57814cf93f23</originalsourceid><addsrcrecordid>eNpNkE9Lw0AQxRdRsFY_gOBhwXPq_k2y3kprNdAi1HryELab2bKlTeruptBvb0J78PSG4b2Zxw-hR0pGlBL1sipWXyNGGB9xTgSn2RUaUCnzhBCaXvczE4kiktyiuxC23VZISgfoZ1HMile8aHexSCZ6D17jGejYesBFHWHjdXRNjW3j8bJZtyFiPsVTF6LXJkKFp94dweOxie7o4gkvwTSb2vWhe3Rj9S7Aw0WH6Hv2tpp8JPPP92IynieGiTQmFkgFFbE87TopSysFkussTcGkKatEbtRaEkqkFBQkSJapTrOcCmMVt4wP0fP57sE3vy2EWG6b1tfdy5IpKjMuVJZ3Lnp2Gd-E4MGWB-_22p9KSsqeYdkzLHuG5YVhl3k6ZxwA_PMzlkpG-R9y82wd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2915734978</pqid></control><display><type>article</type><title>MIFI: MultI-Camera Feature Integration for Robust 3D Distracted Driver Activity Recognition</title><source>IEEE Electronic Library (IEL)</source><creator>Kuang, Jian ; Li, Wenjing ; Li, Fang ; Zhang, Jun ; Wu, Zhongcheng</creator><creatorcontrib>Kuang, Jian ; Li, Wenjing ; Li, Fang ; Zhang, Jun ; Wu, Zhongcheng</creatorcontrib><description>Distracted driver activity recognition plays a critical role in risk aversion-particularly beneficial in intelligent transportation systems. However, most existing methods make use of only the video from a single view and the difficulty-inconsistent issue is neglected. Different from them, in this work, we propose a novel MultI-camera Feature Integration (MIFI) approach for 3D distracted driver activity recognition by jointly modeling the data from different camera views and explicitly re-weighting examples based on their degree of difficulty. Our contributions are two-fold: (1) We propose a simple but effective multi-camera feature integration framework and provide three types of feature fusion techniques. (2) To address the difficulty-inconsistent problem in distracted driver activity recognition, a periodic learning method, named example re-weighting that can jointly learn the easy and hard samples, is presented. The experimental results on the 3MDAD dataset demonstrate that the proposed MIFI can consistently boost performance compared to single-view models.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2023.3304317</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Activity recognition ; Behavioral sciences ; Cameras ; Distracted driver recognition ; Driver behavior ; example re-weighting ; Feature extraction ; Intelligent transportation systems ; multi-view feature learning ; Risk management ; Road accidents ; Road safety ; Three-dimensional displays ; Vehicles ; Weighting</subject><ispartof>IEEE transactions on intelligent transportation systems, 2024-01, Vol.25 (1), p.338-348</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-fe0ded0f361459f1d9e53a766ec662d48c9b50105541e5e52791e57814cf93f23</cites><orcidid>0000-0003-3201-6675</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10226521$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10226521$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kuang, Jian</creatorcontrib><creatorcontrib>Li, Wenjing</creatorcontrib><creatorcontrib>Li, Fang</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Wu, Zhongcheng</creatorcontrib><title>MIFI: MultI-Camera Feature Integration for Robust 3D Distracted Driver Activity Recognition</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Distracted driver activity recognition plays a critical role in risk aversion-particularly beneficial in intelligent transportation systems. However, most existing methods make use of only the video from a single view and the difficulty-inconsistent issue is neglected. Different from them, in this work, we propose a novel MultI-camera Feature Integration (MIFI) approach for 3D distracted driver activity recognition by jointly modeling the data from different camera views and explicitly re-weighting examples based on their degree of difficulty. Our contributions are two-fold: (1) We propose a simple but effective multi-camera feature integration framework and provide three types of feature fusion techniques. (2) To address the difficulty-inconsistent problem in distracted driver activity recognition, a periodic learning method, named example re-weighting that can jointly learn the easy and hard samples, is presented. The experimental results on the 3MDAD dataset demonstrate that the proposed MIFI can consistently boost performance compared to single-view models.</description><subject>Activity recognition</subject><subject>Behavioral sciences</subject><subject>Cameras</subject><subject>Distracted driver recognition</subject><subject>Driver behavior</subject><subject>example re-weighting</subject><subject>Feature extraction</subject><subject>Intelligent transportation systems</subject><subject>multi-view feature learning</subject><subject>Risk management</subject><subject>Road accidents</subject><subject>Road safety</subject><subject>Three-dimensional displays</subject><subject>Vehicles</subject><subject>Weighting</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9Lw0AQxRdRsFY_gOBhwXPq_k2y3kprNdAi1HryELab2bKlTeruptBvb0J78PSG4b2Zxw-hR0pGlBL1sipWXyNGGB9xTgSn2RUaUCnzhBCaXvczE4kiktyiuxC23VZISgfoZ1HMile8aHexSCZ6D17jGejYesBFHWHjdXRNjW3j8bJZtyFiPsVTF6LXJkKFp94dweOxie7o4gkvwTSb2vWhe3Rj9S7Aw0WH6Hv2tpp8JPPP92IynieGiTQmFkgFFbE87TopSysFkussTcGkKatEbtRaEkqkFBQkSJapTrOcCmMVt4wP0fP57sE3vy2EWG6b1tfdy5IpKjMuVJZ3Lnp2Gd-E4MGWB-_22p9KSsqeYdkzLHuG5YVhl3k6ZxwA_PMzlkpG-R9y82wd</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Kuang, Jian</creator><creator>Li, Wenjing</creator><creator>Li, Fang</creator><creator>Zhang, Jun</creator><creator>Wu, Zhongcheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3201-6675</orcidid></search><sort><creationdate>202401</creationdate><title>MIFI: MultI-Camera Feature Integration for Robust 3D Distracted Driver Activity Recognition</title><author>Kuang, Jian ; Li, Wenjing ; Li, Fang ; Zhang, Jun ; Wu, Zhongcheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-fe0ded0f361459f1d9e53a766ec662d48c9b50105541e5e52791e57814cf93f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Activity recognition</topic><topic>Behavioral sciences</topic><topic>Cameras</topic><topic>Distracted driver recognition</topic><topic>Driver behavior</topic><topic>example re-weighting</topic><topic>Feature extraction</topic><topic>Intelligent transportation systems</topic><topic>multi-view feature learning</topic><topic>Risk management</topic><topic>Road accidents</topic><topic>Road safety</topic><topic>Three-dimensional displays</topic><topic>Vehicles</topic><topic>Weighting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuang, Jian</creatorcontrib><creatorcontrib>Li, Wenjing</creatorcontrib><creatorcontrib>Li, Fang</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Wu, Zhongcheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kuang, Jian</au><au>Li, Wenjing</au><au>Li, Fang</au><au>Zhang, Jun</au><au>Wu, Zhongcheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MIFI: MultI-Camera Feature Integration for Robust 3D Distracted Driver Activity Recognition</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2024-01</date><risdate>2024</risdate><volume>25</volume><issue>1</issue><spage>338</spage><epage>348</epage><pages>338-348</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Distracted driver activity recognition plays a critical role in risk aversion-particularly beneficial in intelligent transportation systems. However, most existing methods make use of only the video from a single view and the difficulty-inconsistent issue is neglected. Different from them, in this work, we propose a novel MultI-camera Feature Integration (MIFI) approach for 3D distracted driver activity recognition by jointly modeling the data from different camera views and explicitly re-weighting examples based on their degree of difficulty. Our contributions are two-fold: (1) We propose a simple but effective multi-camera feature integration framework and provide three types of feature fusion techniques. (2) To address the difficulty-inconsistent problem in distracted driver activity recognition, a periodic learning method, named example re-weighting that can jointly learn the easy and hard samples, is presented. The experimental results on the 3MDAD dataset demonstrate that the proposed MIFI can consistently boost performance compared to single-view models.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2023.3304317</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3201-6675</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2024-01, Vol.25 (1), p.338-348
issn 1524-9050
1558-0016
language eng
recordid cdi_proquest_journals_2915734978
source IEEE Electronic Library (IEL)
subjects Activity recognition
Behavioral sciences
Cameras
Distracted driver recognition
Driver behavior
example re-weighting
Feature extraction
Intelligent transportation systems
multi-view feature learning
Risk management
Road accidents
Road safety
Three-dimensional displays
Vehicles
Weighting
title MIFI: MultI-Camera Feature Integration for Robust 3D Distracted Driver Activity Recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A37%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MIFI:%20MultI-Camera%20Feature%20Integration%20for%20Robust%203D%20Distracted%20Driver%20Activity%20Recognition&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Kuang,%20Jian&rft.date=2024-01&rft.volume=25&rft.issue=1&rft.spage=338&rft.epage=348&rft.pages=338-348&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2023.3304317&rft_dat=%3Cproquest_RIE%3E2915734978%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2915734978&rft_id=info:pmid/&rft_ieee_id=10226521&rfr_iscdi=true