Angular Tracking Consistency Guided Fast Feature Association for Visual-Inertial SLAM

Sparse feature based visual-inertial SLAM system shows great potential for accurate pose estimation in real-time, especially for low-cost devices. However, the feature correspondence outliers inevitably degrade the localization accuracy, or cause failures. Unlike the existing methods that eliminate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2024-01, Vol.73, p.1-1
Hauptverfasser: Xie, Hongle, Deng, Tianchen, Wang, Jingchuan, Chen, Weidong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on instrumentation and measurement
container_volume 73
creator Xie, Hongle
Deng, Tianchen
Wang, Jingchuan
Chen, Weidong
description Sparse feature based visual-inertial SLAM system shows great potential for accurate pose estimation in real-time, especially for low-cost devices. However, the feature correspondence outliers inevitably degrade the localization accuracy, or cause failures. Unlike the existing methods that eliminate outliers by fitting a geometric model, which have high complexity and rely on model hypothesis, we present a general and efficient model-free scheme to address these challenges. In particular, we propose a novel uniform bipartite motion field (UBMF) to exactly measure the spatial transforms of sparse feature correspondences in consecutive frames. Moreover, a new recursive angular tracking consistency (RATC) guided fast feature association algorithm is designed, which can efficiently select correspondence and update UBMF simultaneously, and it also holds the linear computational complexity and theoretical performance guarantee. Furthermore, we develop a lightweight angular tracking consistency guided visual-inertial SLAM (ATVIS) system, which achieves better robustness and outperforms the state-of-the-art methods. Massive qualitative and quantitative validations are conducted by both public benchmarks and different real-world experiments, which extensively demonstrate the superiority of our method in both localization accuracy and computational efficiency.
doi_str_mv 10.1109/TIM.2023.3348902
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2915723008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10379105</ieee_id><sourcerecordid>2915723008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-91a57d4c64b99e77f65b4d570509ed6731ad99c63f9f2004fc1e77ebd54f9b143</originalsourceid><addsrcrecordid>eNpNkL9PAjEcxRujiYjuDg5NnA-__U1HQgRJIA6Ca9PrtaR43mF7N_DfewQHp7d83nvJB6FHAhNCQL9sV5sJBcomjPGpBnqFRkQIVWgp6TUaAZBpobmQt-gu5wMAKMnVCO1mzb6vbcLbZN1XbPZ43jY55s437oSXfax8hRc2d3jhbdcnj2c5ty7aLrYNDm3CnzH3ti5WjU9dtDX-WM829-gm2Dr7h78co93idTt_K9bvy9V8ti4c5aIrNLFCVdxJXmrtlQpSlLwSCgRoX0nFiK20dpIFHSgAD44MlC8rwYMuCWdj9HzZPab2p_e5M4e2T81waagmQlEGMB0ouFAutTknH8wxxW-bToaAOcszgzxzlmf-5A2Vp0sleu__4UxpAoL9Aq3Baks</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2915723008</pqid></control><display><type>article</type><title>Angular Tracking Consistency Guided Fast Feature Association for Visual-Inertial SLAM</title><source>IEEE Electronic Library (IEL)</source><creator>Xie, Hongle ; Deng, Tianchen ; Wang, Jingchuan ; Chen, Weidong</creator><creatorcontrib>Xie, Hongle ; Deng, Tianchen ; Wang, Jingchuan ; Chen, Weidong</creatorcontrib><description>Sparse feature based visual-inertial SLAM system shows great potential for accurate pose estimation in real-time, especially for low-cost devices. However, the feature correspondence outliers inevitably degrade the localization accuracy, or cause failures. Unlike the existing methods that eliminate outliers by fitting a geometric model, which have high complexity and rely on model hypothesis, we present a general and efficient model-free scheme to address these challenges. In particular, we propose a novel uniform bipartite motion field (UBMF) to exactly measure the spatial transforms of sparse feature correspondences in consecutive frames. Moreover, a new recursive angular tracking consistency (RATC) guided fast feature association algorithm is designed, which can efficiently select correspondence and update UBMF simultaneously, and it also holds the linear computational complexity and theoretical performance guarantee. Furthermore, we develop a lightweight angular tracking consistency guided visual-inertial SLAM (ATVIS) system, which achieves better robustness and outperforms the state-of-the-art methods. Massive qualitative and quantitative validations are conducted by both public benchmarks and different real-world experiments, which extensively demonstrate the superiority of our method in both localization accuracy and computational efficiency.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2023.3348902</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Algorithms ; Cameras ; Complexity ; Consistency ; feature association ; Inertial guidance ; Localization ; Location awareness ; outlier removal ; Outliers (statistics) ; Pose estimation ; Robot vision systems ; Robustness ; Simultaneous localization and mapping ; Solid modeling ; state estimation ; Tracking ; Visual-inertial SLAM</subject><ispartof>IEEE transactions on instrumentation and measurement, 2024-01, Vol.73, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-91a57d4c64b99e77f65b4d570509ed6731ad99c63f9f2004fc1e77ebd54f9b143</cites><orcidid>0000-0002-4368-7936 ; 0000-0001-8757-0679 ; 0000-0001-8589-6798 ; 0000-0002-1943-1535</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10379105$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10379105$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xie, Hongle</creatorcontrib><creatorcontrib>Deng, Tianchen</creatorcontrib><creatorcontrib>Wang, Jingchuan</creatorcontrib><creatorcontrib>Chen, Weidong</creatorcontrib><title>Angular Tracking Consistency Guided Fast Feature Association for Visual-Inertial SLAM</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Sparse feature based visual-inertial SLAM system shows great potential for accurate pose estimation in real-time, especially for low-cost devices. However, the feature correspondence outliers inevitably degrade the localization accuracy, or cause failures. Unlike the existing methods that eliminate outliers by fitting a geometric model, which have high complexity and rely on model hypothesis, we present a general and efficient model-free scheme to address these challenges. In particular, we propose a novel uniform bipartite motion field (UBMF) to exactly measure the spatial transforms of sparse feature correspondences in consecutive frames. Moreover, a new recursive angular tracking consistency (RATC) guided fast feature association algorithm is designed, which can efficiently select correspondence and update UBMF simultaneously, and it also holds the linear computational complexity and theoretical performance guarantee. Furthermore, we develop a lightweight angular tracking consistency guided visual-inertial SLAM (ATVIS) system, which achieves better robustness and outperforms the state-of-the-art methods. Massive qualitative and quantitative validations are conducted by both public benchmarks and different real-world experiments, which extensively demonstrate the superiority of our method in both localization accuracy and computational efficiency.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Cameras</subject><subject>Complexity</subject><subject>Consistency</subject><subject>feature association</subject><subject>Inertial guidance</subject><subject>Localization</subject><subject>Location awareness</subject><subject>outlier removal</subject><subject>Outliers (statistics)</subject><subject>Pose estimation</subject><subject>Robot vision systems</subject><subject>Robustness</subject><subject>Simultaneous localization and mapping</subject><subject>Solid modeling</subject><subject>state estimation</subject><subject>Tracking</subject><subject>Visual-inertial SLAM</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkL9PAjEcxRujiYjuDg5NnA-__U1HQgRJIA6Ca9PrtaR43mF7N_DfewQHp7d83nvJB6FHAhNCQL9sV5sJBcomjPGpBnqFRkQIVWgp6TUaAZBpobmQt-gu5wMAKMnVCO1mzb6vbcLbZN1XbPZ43jY55s437oSXfax8hRc2d3jhbdcnj2c5ty7aLrYNDm3CnzH3ti5WjU9dtDX-WM829-gm2Dr7h78co93idTt_K9bvy9V8ti4c5aIrNLFCVdxJXmrtlQpSlLwSCgRoX0nFiK20dpIFHSgAD44MlC8rwYMuCWdj9HzZPab2p_e5M4e2T81waagmQlEGMB0ouFAutTknH8wxxW-bToaAOcszgzxzlmf-5A2Vp0sleu__4UxpAoL9Aq3Baks</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Xie, Hongle</creator><creator>Deng, Tianchen</creator><creator>Wang, Jingchuan</creator><creator>Chen, Weidong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4368-7936</orcidid><orcidid>https://orcid.org/0000-0001-8757-0679</orcidid><orcidid>https://orcid.org/0000-0001-8589-6798</orcidid><orcidid>https://orcid.org/0000-0002-1943-1535</orcidid></search><sort><creationdate>20240101</creationdate><title>Angular Tracking Consistency Guided Fast Feature Association for Visual-Inertial SLAM</title><author>Xie, Hongle ; Deng, Tianchen ; Wang, Jingchuan ; Chen, Weidong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-91a57d4c64b99e77f65b4d570509ed6731ad99c63f9f2004fc1e77ebd54f9b143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Cameras</topic><topic>Complexity</topic><topic>Consistency</topic><topic>feature association</topic><topic>Inertial guidance</topic><topic>Localization</topic><topic>Location awareness</topic><topic>outlier removal</topic><topic>Outliers (statistics)</topic><topic>Pose estimation</topic><topic>Robot vision systems</topic><topic>Robustness</topic><topic>Simultaneous localization and mapping</topic><topic>Solid modeling</topic><topic>state estimation</topic><topic>Tracking</topic><topic>Visual-inertial SLAM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Hongle</creatorcontrib><creatorcontrib>Deng, Tianchen</creatorcontrib><creatorcontrib>Wang, Jingchuan</creatorcontrib><creatorcontrib>Chen, Weidong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xie, Hongle</au><au>Deng, Tianchen</au><au>Wang, Jingchuan</au><au>Chen, Weidong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Angular Tracking Consistency Guided Fast Feature Association for Visual-Inertial SLAM</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>73</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Sparse feature based visual-inertial SLAM system shows great potential for accurate pose estimation in real-time, especially for low-cost devices. However, the feature correspondence outliers inevitably degrade the localization accuracy, or cause failures. Unlike the existing methods that eliminate outliers by fitting a geometric model, which have high complexity and rely on model hypothesis, we present a general and efficient model-free scheme to address these challenges. In particular, we propose a novel uniform bipartite motion field (UBMF) to exactly measure the spatial transforms of sparse feature correspondences in consecutive frames. Moreover, a new recursive angular tracking consistency (RATC) guided fast feature association algorithm is designed, which can efficiently select correspondence and update UBMF simultaneously, and it also holds the linear computational complexity and theoretical performance guarantee. Furthermore, we develop a lightweight angular tracking consistency guided visual-inertial SLAM (ATVIS) system, which achieves better robustness and outperforms the state-of-the-art methods. Massive qualitative and quantitative validations are conducted by both public benchmarks and different real-world experiments, which extensively demonstrate the superiority of our method in both localization accuracy and computational efficiency.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2023.3348902</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4368-7936</orcidid><orcidid>https://orcid.org/0000-0001-8757-0679</orcidid><orcidid>https://orcid.org/0000-0001-8589-6798</orcidid><orcidid>https://orcid.org/0000-0002-1943-1535</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2024-01, Vol.73, p.1-1
issn 0018-9456
1557-9662
language eng
recordid cdi_proquest_journals_2915723008
source IEEE Electronic Library (IEL)
subjects Accuracy
Algorithms
Cameras
Complexity
Consistency
feature association
Inertial guidance
Localization
Location awareness
outlier removal
Outliers (statistics)
Pose estimation
Robot vision systems
Robustness
Simultaneous localization and mapping
Solid modeling
state estimation
Tracking
Visual-inertial SLAM
title Angular Tracking Consistency Guided Fast Feature Association for Visual-Inertial SLAM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T03%3A43%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Angular%20Tracking%20Consistency%20Guided%20Fast%20Feature%20Association%20for%20Visual-Inertial%20SLAM&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Xie,%20Hongle&rft.date=2024-01-01&rft.volume=73&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2023.3348902&rft_dat=%3Cproquest_RIE%3E2915723008%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2915723008&rft_id=info:pmid/&rft_ieee_id=10379105&rfr_iscdi=true