On the structure of consistent cycles in cubic symmetric graphs

A cycle in a graph is consistent if the automorphism group of the graph admits a one‐step rotation of this cycle. A thorough description of consistent cycles of arc‐transitive subgroups in the full automorphism groups of finite cubic symmetric graphs is given.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of graph theory 2024-03, Vol.105 (3), p.337-356
Hauptverfasser: Kutnar, Klavdija, Marušič, Dragan, Miklavič, Štefko, Šparl, Primož
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 356
container_issue 3
container_start_page 337
container_title Journal of graph theory
container_volume 105
creator Kutnar, Klavdija
Marušič, Dragan
Miklavič, Štefko
Šparl, Primož
description A cycle in a graph is consistent if the automorphism group of the graph admits a one‐step rotation of this cycle. A thorough description of consistent cycles of arc‐transitive subgroups in the full automorphism groups of finite cubic symmetric graphs is given.
doi_str_mv 10.1002/jgt.23041
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2915461606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2915461606</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2921-a1e502d7eb22dd6b6185e9dd814f4ca3e19a656c455251ce48e5df03b6e804be3</originalsourceid><addsrcrecordid>eNp1kMFKw0AQhhdRsFYPvsGCJw9pZza72-QkUmxVCr3U85JsJm1Km8TdDZK3NxqvnmYYvvl_-Bi7R5ghgJgf92EmYpB4wSYI6SICxOSSTSDWMkpByGt24_0RhrOCZMKetjUPB-I-uM6GzhFvSm6b2lc-UB247e2JPK9qbru8stz35zMFN2x7l7UHf8uuyuzk6e5vTtnH6mW3fI022_Xb8nkTWZEKjDIkBaJYUC5EUehcY6IoLYoEZSltFhOmmVbaSqWEQksyIVWUEOeaEpA5xVP2MOa2rvnsyAdzbDpXD5VGpKikRg16oB5HyrrGe0elaV11zlxvEMyPHzP4Mb9-BnY-sl_Vifr_QfO-3o0f30C8ZnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2915461606</pqid></control><display><type>article</type><title>On the structure of consistent cycles in cubic symmetric graphs</title><source>Access via Wiley Online Library</source><creator>Kutnar, Klavdija ; Marušič, Dragan ; Miklavič, Štefko ; Šparl, Primož</creator><creatorcontrib>Kutnar, Klavdija ; Marušič, Dragan ; Miklavič, Štefko ; Šparl, Primož</creatorcontrib><description>A cycle in a graph is consistent if the automorphism group of the graph admits a one‐step rotation of this cycle. A thorough description of consistent cycles of arc‐transitive subgroups in the full automorphism groups of finite cubic symmetric graphs is given.</description><identifier>ISSN: 0364-9024</identifier><identifier>EISSN: 1097-0118</identifier><identifier>DOI: 10.1002/jgt.23041</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>1/2‐consistent cycle ; automorphism ; Automorphisms ; consistent cycle ; cubic symmetric graph ; Graphs ; shunt ; Subgroups ; s‐regular graph</subject><ispartof>Journal of graph theory, 2024-03, Vol.105 (3), p.337-356</ispartof><rights>2023 The Authors. published by Wiley Periodicals LLC.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2921-a1e502d7eb22dd6b6185e9dd814f4ca3e19a656c455251ce48e5df03b6e804be3</cites><orcidid>0000-0002-9836-6398 ; 0000-0002-2878-0745 ; 0000-0002-1760-9475</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjgt.23041$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjgt.23041$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Kutnar, Klavdija</creatorcontrib><creatorcontrib>Marušič, Dragan</creatorcontrib><creatorcontrib>Miklavič, Štefko</creatorcontrib><creatorcontrib>Šparl, Primož</creatorcontrib><title>On the structure of consistent cycles in cubic symmetric graphs</title><title>Journal of graph theory</title><description>A cycle in a graph is consistent if the automorphism group of the graph admits a one‐step rotation of this cycle. A thorough description of consistent cycles of arc‐transitive subgroups in the full automorphism groups of finite cubic symmetric graphs is given.</description><subject>1/2‐consistent cycle</subject><subject>automorphism</subject><subject>Automorphisms</subject><subject>consistent cycle</subject><subject>cubic symmetric graph</subject><subject>Graphs</subject><subject>shunt</subject><subject>Subgroups</subject><subject>s‐regular graph</subject><issn>0364-9024</issn><issn>1097-0118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp1kMFKw0AQhhdRsFYPvsGCJw9pZza72-QkUmxVCr3U85JsJm1Km8TdDZK3NxqvnmYYvvl_-Bi7R5ghgJgf92EmYpB4wSYI6SICxOSSTSDWMkpByGt24_0RhrOCZMKetjUPB-I-uM6GzhFvSm6b2lc-UB247e2JPK9qbru8stz35zMFN2x7l7UHf8uuyuzk6e5vTtnH6mW3fI022_Xb8nkTWZEKjDIkBaJYUC5EUehcY6IoLYoEZSltFhOmmVbaSqWEQksyIVWUEOeaEpA5xVP2MOa2rvnsyAdzbDpXD5VGpKikRg16oB5HyrrGe0elaV11zlxvEMyPHzP4Mb9-BnY-sl_Vifr_QfO-3o0f30C8ZnA</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>Kutnar, Klavdija</creator><creator>Marušič, Dragan</creator><creator>Miklavič, Štefko</creator><creator>Šparl, Primož</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9836-6398</orcidid><orcidid>https://orcid.org/0000-0002-2878-0745</orcidid><orcidid>https://orcid.org/0000-0002-1760-9475</orcidid></search><sort><creationdate>202403</creationdate><title>On the structure of consistent cycles in cubic symmetric graphs</title><author>Kutnar, Klavdija ; Marušič, Dragan ; Miklavič, Štefko ; Šparl, Primož</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2921-a1e502d7eb22dd6b6185e9dd814f4ca3e19a656c455251ce48e5df03b6e804be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>1/2‐consistent cycle</topic><topic>automorphism</topic><topic>Automorphisms</topic><topic>consistent cycle</topic><topic>cubic symmetric graph</topic><topic>Graphs</topic><topic>shunt</topic><topic>Subgroups</topic><topic>s‐regular graph</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kutnar, Klavdija</creatorcontrib><creatorcontrib>Marušič, Dragan</creatorcontrib><creatorcontrib>Miklavič, Štefko</creatorcontrib><creatorcontrib>Šparl, Primož</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><jtitle>Journal of graph theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kutnar, Klavdija</au><au>Marušič, Dragan</au><au>Miklavič, Štefko</au><au>Šparl, Primož</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the structure of consistent cycles in cubic symmetric graphs</atitle><jtitle>Journal of graph theory</jtitle><date>2024-03</date><risdate>2024</risdate><volume>105</volume><issue>3</issue><spage>337</spage><epage>356</epage><pages>337-356</pages><issn>0364-9024</issn><eissn>1097-0118</eissn><abstract>A cycle in a graph is consistent if the automorphism group of the graph admits a one‐step rotation of this cycle. A thorough description of consistent cycles of arc‐transitive subgroups in the full automorphism groups of finite cubic symmetric graphs is given.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/jgt.23041</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-9836-6398</orcidid><orcidid>https://orcid.org/0000-0002-2878-0745</orcidid><orcidid>https://orcid.org/0000-0002-1760-9475</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0364-9024
ispartof Journal of graph theory, 2024-03, Vol.105 (3), p.337-356
issn 0364-9024
1097-0118
language eng
recordid cdi_proquest_journals_2915461606
source Access via Wiley Online Library
subjects 1/2‐consistent cycle
automorphism
Automorphisms
consistent cycle
cubic symmetric graph
Graphs
shunt
Subgroups
s‐regular graph
title On the structure of consistent cycles in cubic symmetric graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A36%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20structure%20of%20consistent%20cycles%20in%20cubic%20symmetric%20graphs&rft.jtitle=Journal%20of%20graph%20theory&rft.au=Kutnar,%20Klavdija&rft.date=2024-03&rft.volume=105&rft.issue=3&rft.spage=337&rft.epage=356&rft.pages=337-356&rft.issn=0364-9024&rft.eissn=1097-0118&rft_id=info:doi/10.1002/jgt.23041&rft_dat=%3Cproquest_cross%3E2915461606%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2915461606&rft_id=info:pmid/&rfr_iscdi=true