Development of a kiln petcoke mill predictive model based on a multi-regression XGBoost algorithm

This paper presents an investigation into the optimization of petroleum coke mill or petcoke mill processes, to improve efficiency and reduce waste in the heavy industry within the cement plant where our study is conducted. Our mission was to create a robust algorithm that could properly anticipate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2024-02, Vol.130 (7-8), p.3373-3386
Hauptverfasser: Benchekroun, Mohammed Toum, Zaki, Smail, Aboussaleh, Mohamed, Belrhiti, Hajar, Diassana, Fatoumata
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3386
container_issue 7-8
container_start_page 3373
container_title International journal of advanced manufacturing technology
container_volume 130
creator Benchekroun, Mohammed Toum
Zaki, Smail
Aboussaleh, Mohamed
Belrhiti, Hajar
Diassana, Fatoumata
description This paper presents an investigation into the optimization of petroleum coke mill or petcoke mill processes, to improve efficiency and reduce waste in the heavy industry within the cement plant where our study is conducted. Our mission was to create a robust algorithm that could properly anticipate the mill’s performance and improve its operations. To accomplish this, we started by performing a comprehensive data analysis. Next, we built numerous regression models, and then assessed the effectiveness of each model using four crucial metrics. The suggested model is a multi-regression XGBoost (eXtreme gradient boosting) model, performing with a 90% score. Finally, the model will then be used to build an algorithm that can optimize the input values to accomplish the intended results.
doi_str_mv 10.1007/s00170-023-12689-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2915423928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2915423928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-944898c7ed6b70946f4e97ad8cf5687a03c4d370c4a60400257d275adf38ebbe3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz9F8tUmPuuoqLHhR8BbSdLp2t21q0hXcX2-0gjdPwwzP-w48CJ0zeskoVVeRUqYooVwQxnNdkP0BmjEpBBGUZYdoRtOVCJXrY3QS4ybhOcv1DNlb-IDWDx30I_Y1tnjbtD0eYHR-C7hr2hYPAarGjc1H2n0FLS5thAr7PtHdrh0bEmAdIMYmnV6XN97HEdt27UMzvnWn6Ki2bYSz3zlHL_d3z4sHsnpaPi6uV8QJVoykkFIX2imo8lLRQua1hELZSrs6y7WyVDhZCUWdtDmVlPJMVVxltqqFhrIEMUcXU-8Q_PsO4mg2fhf69NLwgmWSi4LrRPGJcsHHGKA2Q2g6Gz4No-ZbpZlUmqTS_Kg0-xQSUygmuF9D-Kv-J_UFa3132g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2915423928</pqid></control><display><type>article</type><title>Development of a kiln petcoke mill predictive model based on a multi-regression XGBoost algorithm</title><source>SpringerLink Journals - AutoHoldings</source><creator>Benchekroun, Mohammed Toum ; Zaki, Smail ; Aboussaleh, Mohamed ; Belrhiti, Hajar ; Diassana, Fatoumata</creator><creatorcontrib>Benchekroun, Mohammed Toum ; Zaki, Smail ; Aboussaleh, Mohamed ; Belrhiti, Hajar ; Diassana, Fatoumata</creatorcontrib><description>This paper presents an investigation into the optimization of petroleum coke mill or petcoke mill processes, to improve efficiency and reduce waste in the heavy industry within the cement plant where our study is conducted. Our mission was to create a robust algorithm that could properly anticipate the mill’s performance and improve its operations. To accomplish this, we started by performing a comprehensive data analysis. Next, we built numerous regression models, and then assessed the effectiveness of each model using four crucial metrics. The suggested model is a multi-regression XGBoost (eXtreme gradient boosting) model, performing with a 90% score. Finally, the model will then be used to build an algorithm that can optimize the input values to accomplish the intended results.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-023-12689-z</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Advanced manufacturing technologies ; Algorithms ; Artificial intelligence ; CAE) and Design ; Cement industry ; Cement plants ; Coal ; Computer-Aided Engineering (CAD ; Costs ; Data analysis ; Datasets ; Electricity ; Energy consumption ; Energy efficiency ; Engineering ; Industrial and Production Engineering ; Investigations ; Literature reviews ; Machine learning ; Manufacturing ; Mechanical Engineering ; Media Management ; Optimization ; Original Article ; Petroleum coke ; Prediction models ; Regression models</subject><ispartof>International journal of advanced manufacturing technology, 2024-02, Vol.130 (7-8), p.3373-3386</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-944898c7ed6b70946f4e97ad8cf5687a03c4d370c4a60400257d275adf38ebbe3</citedby><cites>FETCH-LOGICAL-c319t-944898c7ed6b70946f4e97ad8cf5687a03c4d370c4a60400257d275adf38ebbe3</cites><orcidid>0000-0003-1586-6352</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-023-12689-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-023-12689-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Benchekroun, Mohammed Toum</creatorcontrib><creatorcontrib>Zaki, Smail</creatorcontrib><creatorcontrib>Aboussaleh, Mohamed</creatorcontrib><creatorcontrib>Belrhiti, Hajar</creatorcontrib><creatorcontrib>Diassana, Fatoumata</creatorcontrib><title>Development of a kiln petcoke mill predictive model based on a multi-regression XGBoost algorithm</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>This paper presents an investigation into the optimization of petroleum coke mill or petcoke mill processes, to improve efficiency and reduce waste in the heavy industry within the cement plant where our study is conducted. Our mission was to create a robust algorithm that could properly anticipate the mill’s performance and improve its operations. To accomplish this, we started by performing a comprehensive data analysis. Next, we built numerous regression models, and then assessed the effectiveness of each model using four crucial metrics. The suggested model is a multi-regression XGBoost (eXtreme gradient boosting) model, performing with a 90% score. Finally, the model will then be used to build an algorithm that can optimize the input values to accomplish the intended results.</description><subject>Advanced manufacturing technologies</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>CAE) and Design</subject><subject>Cement industry</subject><subject>Cement plants</subject><subject>Coal</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Costs</subject><subject>Data analysis</subject><subject>Datasets</subject><subject>Electricity</subject><subject>Energy consumption</subject><subject>Energy efficiency</subject><subject>Engineering</subject><subject>Industrial and Production Engineering</subject><subject>Investigations</subject><subject>Literature reviews</subject><subject>Machine learning</subject><subject>Manufacturing</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Optimization</subject><subject>Original Article</subject><subject>Petroleum coke</subject><subject>Prediction models</subject><subject>Regression models</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz9F8tUmPuuoqLHhR8BbSdLp2t21q0hXcX2-0gjdPwwzP-w48CJ0zeskoVVeRUqYooVwQxnNdkP0BmjEpBBGUZYdoRtOVCJXrY3QS4ybhOcv1DNlb-IDWDx30I_Y1tnjbtD0eYHR-C7hr2hYPAarGjc1H2n0FLS5thAr7PtHdrh0bEmAdIMYmnV6XN97HEdt27UMzvnWn6Ki2bYSz3zlHL_d3z4sHsnpaPi6uV8QJVoykkFIX2imo8lLRQua1hELZSrs6y7WyVDhZCUWdtDmVlPJMVVxltqqFhrIEMUcXU-8Q_PsO4mg2fhf69NLwgmWSi4LrRPGJcsHHGKA2Q2g6Gz4No-ZbpZlUmqTS_Kg0-xQSUygmuF9D-Kv-J_UFa3132g</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Benchekroun, Mohammed Toum</creator><creator>Zaki, Smail</creator><creator>Aboussaleh, Mohamed</creator><creator>Belrhiti, Hajar</creator><creator>Diassana, Fatoumata</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1586-6352</orcidid></search><sort><creationdate>20240201</creationdate><title>Development of a kiln petcoke mill predictive model based on a multi-regression XGBoost algorithm</title><author>Benchekroun, Mohammed Toum ; Zaki, Smail ; Aboussaleh, Mohamed ; Belrhiti, Hajar ; Diassana, Fatoumata</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-944898c7ed6b70946f4e97ad8cf5687a03c4d370c4a60400257d275adf38ebbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Advanced manufacturing technologies</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>CAE) and Design</topic><topic>Cement industry</topic><topic>Cement plants</topic><topic>Coal</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Costs</topic><topic>Data analysis</topic><topic>Datasets</topic><topic>Electricity</topic><topic>Energy consumption</topic><topic>Energy efficiency</topic><topic>Engineering</topic><topic>Industrial and Production Engineering</topic><topic>Investigations</topic><topic>Literature reviews</topic><topic>Machine learning</topic><topic>Manufacturing</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Optimization</topic><topic>Original Article</topic><topic>Petroleum coke</topic><topic>Prediction models</topic><topic>Regression models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benchekroun, Mohammed Toum</creatorcontrib><creatorcontrib>Zaki, Smail</creatorcontrib><creatorcontrib>Aboussaleh, Mohamed</creatorcontrib><creatorcontrib>Belrhiti, Hajar</creatorcontrib><creatorcontrib>Diassana, Fatoumata</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benchekroun, Mohammed Toum</au><au>Zaki, Smail</au><au>Aboussaleh, Mohamed</au><au>Belrhiti, Hajar</au><au>Diassana, Fatoumata</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a kiln petcoke mill predictive model based on a multi-regression XGBoost algorithm</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>130</volume><issue>7-8</issue><spage>3373</spage><epage>3386</epage><pages>3373-3386</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>This paper presents an investigation into the optimization of petroleum coke mill or petcoke mill processes, to improve efficiency and reduce waste in the heavy industry within the cement plant where our study is conducted. Our mission was to create a robust algorithm that could properly anticipate the mill’s performance and improve its operations. To accomplish this, we started by performing a comprehensive data analysis. Next, we built numerous regression models, and then assessed the effectiveness of each model using four crucial metrics. The suggested model is a multi-regression XGBoost (eXtreme gradient boosting) model, performing with a 90% score. Finally, the model will then be used to build an algorithm that can optimize the input values to accomplish the intended results.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-023-12689-z</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1586-6352</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2024-02, Vol.130 (7-8), p.3373-3386
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2915423928
source SpringerLink Journals - AutoHoldings
subjects Advanced manufacturing technologies
Algorithms
Artificial intelligence
CAE) and Design
Cement industry
Cement plants
Coal
Computer-Aided Engineering (CAD
Costs
Data analysis
Datasets
Electricity
Energy consumption
Energy efficiency
Engineering
Industrial and Production Engineering
Investigations
Literature reviews
Machine learning
Manufacturing
Mechanical Engineering
Media Management
Optimization
Original Article
Petroleum coke
Prediction models
Regression models
title Development of a kiln petcoke mill predictive model based on a multi-regression XGBoost algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A52%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20kiln%20petcoke%20mill%20predictive%20model%20based%20on%20a%20multi-regression%20XGBoost%20algorithm&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Benchekroun,%20Mohammed%20Toum&rft.date=2024-02-01&rft.volume=130&rft.issue=7-8&rft.spage=3373&rft.epage=3386&rft.pages=3373-3386&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-023-12689-z&rft_dat=%3Cproquest_cross%3E2915423928%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2915423928&rft_id=info:pmid/&rfr_iscdi=true