Development of a kiln petcoke mill predictive model based on a multi-regression XGBoost algorithm
This paper presents an investigation into the optimization of petroleum coke mill or petcoke mill processes, to improve efficiency and reduce waste in the heavy industry within the cement plant where our study is conducted. Our mission was to create a robust algorithm that could properly anticipate...
Gespeichert in:
Veröffentlicht in: | International journal of advanced manufacturing technology 2024-02, Vol.130 (7-8), p.3373-3386 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3386 |
---|---|
container_issue | 7-8 |
container_start_page | 3373 |
container_title | International journal of advanced manufacturing technology |
container_volume | 130 |
creator | Benchekroun, Mohammed Toum Zaki, Smail Aboussaleh, Mohamed Belrhiti, Hajar Diassana, Fatoumata |
description | This paper presents an investigation into the optimization of petroleum coke mill or petcoke mill processes, to improve efficiency and reduce waste in the heavy industry within the cement plant where our study is conducted. Our mission was to create a robust algorithm that could properly anticipate the mill’s performance and improve its operations. To accomplish this, we started by performing a comprehensive data analysis. Next, we built numerous regression models, and then assessed the effectiveness of each model using four crucial metrics. The suggested model is a multi-regression XGBoost (eXtreme gradient boosting) model, performing with a 90% score. Finally, the model will then be used to build an algorithm that can optimize the input values to accomplish the intended results. |
doi_str_mv | 10.1007/s00170-023-12689-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2915423928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2915423928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-944898c7ed6b70946f4e97ad8cf5687a03c4d370c4a60400257d275adf38ebbe3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz9F8tUmPuuoqLHhR8BbSdLp2t21q0hXcX2-0gjdPwwzP-w48CJ0zeskoVVeRUqYooVwQxnNdkP0BmjEpBBGUZYdoRtOVCJXrY3QS4ybhOcv1DNlb-IDWDx30I_Y1tnjbtD0eYHR-C7hr2hYPAarGjc1H2n0FLS5thAr7PtHdrh0bEmAdIMYmnV6XN97HEdt27UMzvnWn6Ki2bYSz3zlHL_d3z4sHsnpaPi6uV8QJVoykkFIX2imo8lLRQua1hELZSrs6y7WyVDhZCUWdtDmVlPJMVVxltqqFhrIEMUcXU-8Q_PsO4mg2fhf69NLwgmWSi4LrRPGJcsHHGKA2Q2g6Gz4No-ZbpZlUmqTS_Kg0-xQSUygmuF9D-Kv-J_UFa3132g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2915423928</pqid></control><display><type>article</type><title>Development of a kiln petcoke mill predictive model based on a multi-regression XGBoost algorithm</title><source>SpringerLink Journals - AutoHoldings</source><creator>Benchekroun, Mohammed Toum ; Zaki, Smail ; Aboussaleh, Mohamed ; Belrhiti, Hajar ; Diassana, Fatoumata</creator><creatorcontrib>Benchekroun, Mohammed Toum ; Zaki, Smail ; Aboussaleh, Mohamed ; Belrhiti, Hajar ; Diassana, Fatoumata</creatorcontrib><description>This paper presents an investigation into the optimization of petroleum coke mill or petcoke mill processes, to improve efficiency and reduce waste in the heavy industry within the cement plant where our study is conducted. Our mission was to create a robust algorithm that could properly anticipate the mill’s performance and improve its operations. To accomplish this, we started by performing a comprehensive data analysis. Next, we built numerous regression models, and then assessed the effectiveness of each model using four crucial metrics. The suggested model is a multi-regression XGBoost (eXtreme gradient boosting) model, performing with a 90% score. Finally, the model will then be used to build an algorithm that can optimize the input values to accomplish the intended results.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-023-12689-z</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Advanced manufacturing technologies ; Algorithms ; Artificial intelligence ; CAE) and Design ; Cement industry ; Cement plants ; Coal ; Computer-Aided Engineering (CAD ; Costs ; Data analysis ; Datasets ; Electricity ; Energy consumption ; Energy efficiency ; Engineering ; Industrial and Production Engineering ; Investigations ; Literature reviews ; Machine learning ; Manufacturing ; Mechanical Engineering ; Media Management ; Optimization ; Original Article ; Petroleum coke ; Prediction models ; Regression models</subject><ispartof>International journal of advanced manufacturing technology, 2024-02, Vol.130 (7-8), p.3373-3386</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-944898c7ed6b70946f4e97ad8cf5687a03c4d370c4a60400257d275adf38ebbe3</citedby><cites>FETCH-LOGICAL-c319t-944898c7ed6b70946f4e97ad8cf5687a03c4d370c4a60400257d275adf38ebbe3</cites><orcidid>0000-0003-1586-6352</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-023-12689-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-023-12689-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Benchekroun, Mohammed Toum</creatorcontrib><creatorcontrib>Zaki, Smail</creatorcontrib><creatorcontrib>Aboussaleh, Mohamed</creatorcontrib><creatorcontrib>Belrhiti, Hajar</creatorcontrib><creatorcontrib>Diassana, Fatoumata</creatorcontrib><title>Development of a kiln petcoke mill predictive model based on a multi-regression XGBoost algorithm</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>This paper presents an investigation into the optimization of petroleum coke mill or petcoke mill processes, to improve efficiency and reduce waste in the heavy industry within the cement plant where our study is conducted. Our mission was to create a robust algorithm that could properly anticipate the mill’s performance and improve its operations. To accomplish this, we started by performing a comprehensive data analysis. Next, we built numerous regression models, and then assessed the effectiveness of each model using four crucial metrics. The suggested model is a multi-regression XGBoost (eXtreme gradient boosting) model, performing with a 90% score. Finally, the model will then be used to build an algorithm that can optimize the input values to accomplish the intended results.</description><subject>Advanced manufacturing technologies</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>CAE) and Design</subject><subject>Cement industry</subject><subject>Cement plants</subject><subject>Coal</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Costs</subject><subject>Data analysis</subject><subject>Datasets</subject><subject>Electricity</subject><subject>Energy consumption</subject><subject>Energy efficiency</subject><subject>Engineering</subject><subject>Industrial and Production Engineering</subject><subject>Investigations</subject><subject>Literature reviews</subject><subject>Machine learning</subject><subject>Manufacturing</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Optimization</subject><subject>Original Article</subject><subject>Petroleum coke</subject><subject>Prediction models</subject><subject>Regression models</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz9F8tUmPuuoqLHhR8BbSdLp2t21q0hXcX2-0gjdPwwzP-w48CJ0zeskoVVeRUqYooVwQxnNdkP0BmjEpBBGUZYdoRtOVCJXrY3QS4ybhOcv1DNlb-IDWDx30I_Y1tnjbtD0eYHR-C7hr2hYPAarGjc1H2n0FLS5thAr7PtHdrh0bEmAdIMYmnV6XN97HEdt27UMzvnWn6Ki2bYSz3zlHL_d3z4sHsnpaPi6uV8QJVoykkFIX2imo8lLRQua1hELZSrs6y7WyVDhZCUWdtDmVlPJMVVxltqqFhrIEMUcXU-8Q_PsO4mg2fhf69NLwgmWSi4LrRPGJcsHHGKA2Q2g6Gz4No-ZbpZlUmqTS_Kg0-xQSUygmuF9D-Kv-J_UFa3132g</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Benchekroun, Mohammed Toum</creator><creator>Zaki, Smail</creator><creator>Aboussaleh, Mohamed</creator><creator>Belrhiti, Hajar</creator><creator>Diassana, Fatoumata</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1586-6352</orcidid></search><sort><creationdate>20240201</creationdate><title>Development of a kiln petcoke mill predictive model based on a multi-regression XGBoost algorithm</title><author>Benchekroun, Mohammed Toum ; Zaki, Smail ; Aboussaleh, Mohamed ; Belrhiti, Hajar ; Diassana, Fatoumata</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-944898c7ed6b70946f4e97ad8cf5687a03c4d370c4a60400257d275adf38ebbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Advanced manufacturing technologies</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>CAE) and Design</topic><topic>Cement industry</topic><topic>Cement plants</topic><topic>Coal</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Costs</topic><topic>Data analysis</topic><topic>Datasets</topic><topic>Electricity</topic><topic>Energy consumption</topic><topic>Energy efficiency</topic><topic>Engineering</topic><topic>Industrial and Production Engineering</topic><topic>Investigations</topic><topic>Literature reviews</topic><topic>Machine learning</topic><topic>Manufacturing</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Optimization</topic><topic>Original Article</topic><topic>Petroleum coke</topic><topic>Prediction models</topic><topic>Regression models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benchekroun, Mohammed Toum</creatorcontrib><creatorcontrib>Zaki, Smail</creatorcontrib><creatorcontrib>Aboussaleh, Mohamed</creatorcontrib><creatorcontrib>Belrhiti, Hajar</creatorcontrib><creatorcontrib>Diassana, Fatoumata</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benchekroun, Mohammed Toum</au><au>Zaki, Smail</au><au>Aboussaleh, Mohamed</au><au>Belrhiti, Hajar</au><au>Diassana, Fatoumata</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a kiln petcoke mill predictive model based on a multi-regression XGBoost algorithm</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>130</volume><issue>7-8</issue><spage>3373</spage><epage>3386</epage><pages>3373-3386</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>This paper presents an investigation into the optimization of petroleum coke mill or petcoke mill processes, to improve efficiency and reduce waste in the heavy industry within the cement plant where our study is conducted. Our mission was to create a robust algorithm that could properly anticipate the mill’s performance and improve its operations. To accomplish this, we started by performing a comprehensive data analysis. Next, we built numerous regression models, and then assessed the effectiveness of each model using four crucial metrics. The suggested model is a multi-regression XGBoost (eXtreme gradient boosting) model, performing with a 90% score. Finally, the model will then be used to build an algorithm that can optimize the input values to accomplish the intended results.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-023-12689-z</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1586-6352</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-3768 |
ispartof | International journal of advanced manufacturing technology, 2024-02, Vol.130 (7-8), p.3373-3386 |
issn | 0268-3768 1433-3015 |
language | eng |
recordid | cdi_proquest_journals_2915423928 |
source | SpringerLink Journals - AutoHoldings |
subjects | Advanced manufacturing technologies Algorithms Artificial intelligence CAE) and Design Cement industry Cement plants Coal Computer-Aided Engineering (CAD Costs Data analysis Datasets Electricity Energy consumption Energy efficiency Engineering Industrial and Production Engineering Investigations Literature reviews Machine learning Manufacturing Mechanical Engineering Media Management Optimization Original Article Petroleum coke Prediction models Regression models |
title | Development of a kiln petcoke mill predictive model based on a multi-regression XGBoost algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A52%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20kiln%20petcoke%20mill%20predictive%20model%20based%20on%20a%20multi-regression%20XGBoost%20algorithm&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Benchekroun,%20Mohammed%20Toum&rft.date=2024-02-01&rft.volume=130&rft.issue=7-8&rft.spage=3373&rft.epage=3386&rft.pages=3373-3386&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-023-12689-z&rft_dat=%3Cproquest_cross%3E2915423928%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2915423928&rft_id=info:pmid/&rfr_iscdi=true |