Analysis of dynamic characteristics of cantilevers excited at the fixed end in dynamic atomic force microscopy in liquid environments

Dynamic atomic force microscopy (AFM) is commonly employed for the analysis of material morphology and mechanical properties at the micro and nanoscale in liquid environments. A comprehensive understanding of the dynamic characteristics of AFM cantilevers in liquid environments is crucial for the de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Meccanica (Milan) 2024, Vol.59 (1), p.75-88
Hauptverfasser: Zhou, Xilong, Yang, Changyun, Zhang, Bangzhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 88
container_issue 1
container_start_page 75
container_title Meccanica (Milan)
container_volume 59
creator Zhou, Xilong
Yang, Changyun
Zhang, Bangzhi
description Dynamic atomic force microscopy (AFM) is commonly employed for the analysis of material morphology and mechanical properties at the micro and nanoscale in liquid environments. A comprehensive understanding of the dynamic characteristics of AFM cantilevers in liquid environments is crucial for the development of quantitative methods to assess mechanical properties accurately. In this study, we investigate the dynamical behaviors of AFM cantilevers in liquid environments by introducing added mass and added damping to simulate the effects of fluid on the cantilever using the finite difference method (FDM). The time-domain response and spectrum of the cantilever are investigated, as well as the dynamic characteristics of the cantilever in bimodal AFM. The results demonstrate that the thickness of the cantilever has a greater impact on the cantilever’s natural frequency and quality factors in liquids. The fluid density dominates the natural frequency, and the fluid viscosity dominates the quality factor. In the presence of tip-sample interaction, the vibration shape curves in liquids tend to incline upwards, and the displacement response no longer takes the form of a sine/cosine curve, according to time domain and spectrum analysis. The squeeze damping decreases the displacement response of the cantilever and inhibits the amplification of higher harmonics of the displacement and interaction force. The continuous beam model based on FDM is suitable for evaluating the dynamics of bimodal AFM in liquid, and it overcomes the constraints on detection position and modal parameters compared to the mode coupling method.
doi_str_mv 10.1007/s11012-023-01742-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2915105876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2915105876</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-1233d131be3bf0d6b6e467efdd087b2b38cd2b2e5c146a20dd8dbbb10739acb53</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssQ6M7ThJl1XFS6rEBtaWHxPqqk1a262aD-C_SVoEO1YzI99zZR1CbhncM4DyITIGjGfARQaszHlWnJERkyXPJkVenZMRAJdZkUt5Sa5iXAL0GMgR-Zo2etVFH2lbU9c1eu0ttQsdtE0YfEzeHp-sbpJf4R5DpHiwPqGjOtG0QFr7Q39g46hvfit0aodRt8Ei7bfQRttuuiGy8tudH4C9D22zxibFa3JR61XEm585Jh9Pj--zl2z-9vw6m84zy0tIGeNCOCaYQWFqcIUpMC9KrJ2DqjTciMo6bjhKy_JCc3CucsYYBqWYaGukGJO7U-8mtNsdxqSW7S70BqLiEyYZyKos-hQ_pYZfx4C12gS_1qFTDNSgW510q163OupWAyROUOzDzSeGv-p_qG9WmYYC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2915105876</pqid></control><display><type>article</type><title>Analysis of dynamic characteristics of cantilevers excited at the fixed end in dynamic atomic force microscopy in liquid environments</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zhou, Xilong ; Yang, Changyun ; Zhang, Bangzhi</creator><creatorcontrib>Zhou, Xilong ; Yang, Changyun ; Zhang, Bangzhi</creatorcontrib><description>Dynamic atomic force microscopy (AFM) is commonly employed for the analysis of material morphology and mechanical properties at the micro and nanoscale in liquid environments. A comprehensive understanding of the dynamic characteristics of AFM cantilevers in liquid environments is crucial for the development of quantitative methods to assess mechanical properties accurately. In this study, we investigate the dynamical behaviors of AFM cantilevers in liquid environments by introducing added mass and added damping to simulate the effects of fluid on the cantilever using the finite difference method (FDM). The time-domain response and spectrum of the cantilever are investigated, as well as the dynamic characteristics of the cantilever in bimodal AFM. The results demonstrate that the thickness of the cantilever has a greater impact on the cantilever’s natural frequency and quality factors in liquids. The fluid density dominates the natural frequency, and the fluid viscosity dominates the quality factor. In the presence of tip-sample interaction, the vibration shape curves in liquids tend to incline upwards, and the displacement response no longer takes the form of a sine/cosine curve, according to time domain and spectrum analysis. The squeeze damping decreases the displacement response of the cantilever and inhibits the amplification of higher harmonics of the displacement and interaction force. The continuous beam model based on FDM is suitable for evaluating the dynamics of bimodal AFM in liquid, and it overcomes the constraints on detection position and modal parameters compared to the mode coupling method.</description><identifier>ISSN: 0025-6455</identifier><identifier>EISSN: 1572-9648</identifier><identifier>DOI: 10.1007/s11012-023-01742-6</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Atomic force microscopy ; Automotive Engineering ; Civil Engineering ; Classical Mechanics ; Continuous beams ; Coupled modes ; Damping ; Dynamic characteristics ; Engineering ; Finite difference method ; Higher harmonics ; Liquids ; Mechanical Engineering ; Mechanical properties ; Microscopy ; Q factors ; Resonant frequencies ; Spectrum analysis ; Time domain analysis ; Trigonometric functions</subject><ispartof>Meccanica (Milan), 2024, Vol.59 (1), p.75-88</ispartof><rights>Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-1233d131be3bf0d6b6e467efdd087b2b38cd2b2e5c146a20dd8dbbb10739acb53</cites><orcidid>0000-0002-8964-5854</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11012-023-01742-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11012-023-01742-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Zhou, Xilong</creatorcontrib><creatorcontrib>Yang, Changyun</creatorcontrib><creatorcontrib>Zhang, Bangzhi</creatorcontrib><title>Analysis of dynamic characteristics of cantilevers excited at the fixed end in dynamic atomic force microscopy in liquid environments</title><title>Meccanica (Milan)</title><addtitle>Meccanica</addtitle><description>Dynamic atomic force microscopy (AFM) is commonly employed for the analysis of material morphology and mechanical properties at the micro and nanoscale in liquid environments. A comprehensive understanding of the dynamic characteristics of AFM cantilevers in liquid environments is crucial for the development of quantitative methods to assess mechanical properties accurately. In this study, we investigate the dynamical behaviors of AFM cantilevers in liquid environments by introducing added mass and added damping to simulate the effects of fluid on the cantilever using the finite difference method (FDM). The time-domain response and spectrum of the cantilever are investigated, as well as the dynamic characteristics of the cantilever in bimodal AFM. The results demonstrate that the thickness of the cantilever has a greater impact on the cantilever’s natural frequency and quality factors in liquids. The fluid density dominates the natural frequency, and the fluid viscosity dominates the quality factor. In the presence of tip-sample interaction, the vibration shape curves in liquids tend to incline upwards, and the displacement response no longer takes the form of a sine/cosine curve, according to time domain and spectrum analysis. The squeeze damping decreases the displacement response of the cantilever and inhibits the amplification of higher harmonics of the displacement and interaction force. The continuous beam model based on FDM is suitable for evaluating the dynamics of bimodal AFM in liquid, and it overcomes the constraints on detection position and modal parameters compared to the mode coupling method.</description><subject>Atomic force microscopy</subject><subject>Automotive Engineering</subject><subject>Civil Engineering</subject><subject>Classical Mechanics</subject><subject>Continuous beams</subject><subject>Coupled modes</subject><subject>Damping</subject><subject>Dynamic characteristics</subject><subject>Engineering</subject><subject>Finite difference method</subject><subject>Higher harmonics</subject><subject>Liquids</subject><subject>Mechanical Engineering</subject><subject>Mechanical properties</subject><subject>Microscopy</subject><subject>Q factors</subject><subject>Resonant frequencies</subject><subject>Spectrum analysis</subject><subject>Time domain analysis</subject><subject>Trigonometric functions</subject><issn>0025-6455</issn><issn>1572-9648</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6wssQ6M7ThJl1XFS6rEBtaWHxPqqk1a262aD-C_SVoEO1YzI99zZR1CbhncM4DyITIGjGfARQaszHlWnJERkyXPJkVenZMRAJdZkUt5Sa5iXAL0GMgR-Zo2etVFH2lbU9c1eu0ttQsdtE0YfEzeHp-sbpJf4R5DpHiwPqGjOtG0QFr7Q39g46hvfit0aodRt8Ei7bfQRttuuiGy8tudH4C9D22zxibFa3JR61XEm585Jh9Pj--zl2z-9vw6m84zy0tIGeNCOCaYQWFqcIUpMC9KrJ2DqjTciMo6bjhKy_JCc3CucsYYBqWYaGukGJO7U-8mtNsdxqSW7S70BqLiEyYZyKos-hQ_pYZfx4C12gS_1qFTDNSgW510q163OupWAyROUOzDzSeGv-p_qG9WmYYC</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Zhou, Xilong</creator><creator>Yang, Changyun</creator><creator>Zhang, Bangzhi</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8964-5854</orcidid></search><sort><creationdate>2024</creationdate><title>Analysis of dynamic characteristics of cantilevers excited at the fixed end in dynamic atomic force microscopy in liquid environments</title><author>Zhou, Xilong ; Yang, Changyun ; Zhang, Bangzhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-1233d131be3bf0d6b6e467efdd087b2b38cd2b2e5c146a20dd8dbbb10739acb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Atomic force microscopy</topic><topic>Automotive Engineering</topic><topic>Civil Engineering</topic><topic>Classical Mechanics</topic><topic>Continuous beams</topic><topic>Coupled modes</topic><topic>Damping</topic><topic>Dynamic characteristics</topic><topic>Engineering</topic><topic>Finite difference method</topic><topic>Higher harmonics</topic><topic>Liquids</topic><topic>Mechanical Engineering</topic><topic>Mechanical properties</topic><topic>Microscopy</topic><topic>Q factors</topic><topic>Resonant frequencies</topic><topic>Spectrum analysis</topic><topic>Time domain analysis</topic><topic>Trigonometric functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Xilong</creatorcontrib><creatorcontrib>Yang, Changyun</creatorcontrib><creatorcontrib>Zhang, Bangzhi</creatorcontrib><collection>CrossRef</collection><jtitle>Meccanica (Milan)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Xilong</au><au>Yang, Changyun</au><au>Zhang, Bangzhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of dynamic characteristics of cantilevers excited at the fixed end in dynamic atomic force microscopy in liquid environments</atitle><jtitle>Meccanica (Milan)</jtitle><stitle>Meccanica</stitle><date>2024</date><risdate>2024</risdate><volume>59</volume><issue>1</issue><spage>75</spage><epage>88</epage><pages>75-88</pages><issn>0025-6455</issn><eissn>1572-9648</eissn><abstract>Dynamic atomic force microscopy (AFM) is commonly employed for the analysis of material morphology and mechanical properties at the micro and nanoscale in liquid environments. A comprehensive understanding of the dynamic characteristics of AFM cantilevers in liquid environments is crucial for the development of quantitative methods to assess mechanical properties accurately. In this study, we investigate the dynamical behaviors of AFM cantilevers in liquid environments by introducing added mass and added damping to simulate the effects of fluid on the cantilever using the finite difference method (FDM). The time-domain response and spectrum of the cantilever are investigated, as well as the dynamic characteristics of the cantilever in bimodal AFM. The results demonstrate that the thickness of the cantilever has a greater impact on the cantilever’s natural frequency and quality factors in liquids. The fluid density dominates the natural frequency, and the fluid viscosity dominates the quality factor. In the presence of tip-sample interaction, the vibration shape curves in liquids tend to incline upwards, and the displacement response no longer takes the form of a sine/cosine curve, according to time domain and spectrum analysis. The squeeze damping decreases the displacement response of the cantilever and inhibits the amplification of higher harmonics of the displacement and interaction force. The continuous beam model based on FDM is suitable for evaluating the dynamics of bimodal AFM in liquid, and it overcomes the constraints on detection position and modal parameters compared to the mode coupling method.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11012-023-01742-6</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8964-5854</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0025-6455
ispartof Meccanica (Milan), 2024, Vol.59 (1), p.75-88
issn 0025-6455
1572-9648
language eng
recordid cdi_proquest_journals_2915105876
source SpringerLink Journals - AutoHoldings
subjects Atomic force microscopy
Automotive Engineering
Civil Engineering
Classical Mechanics
Continuous beams
Coupled modes
Damping
Dynamic characteristics
Engineering
Finite difference method
Higher harmonics
Liquids
Mechanical Engineering
Mechanical properties
Microscopy
Q factors
Resonant frequencies
Spectrum analysis
Time domain analysis
Trigonometric functions
title Analysis of dynamic characteristics of cantilevers excited at the fixed end in dynamic atomic force microscopy in liquid environments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A44%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20dynamic%20characteristics%20of%20cantilevers%20excited%20at%20the%20fixed%20end%20in%20dynamic%20atomic%20force%20microscopy%20in%20liquid%20environments&rft.jtitle=Meccanica%20(Milan)&rft.au=Zhou,%20Xilong&rft.date=2024&rft.volume=59&rft.issue=1&rft.spage=75&rft.epage=88&rft.pages=75-88&rft.issn=0025-6455&rft.eissn=1572-9648&rft_id=info:doi/10.1007/s11012-023-01742-6&rft_dat=%3Cproquest_cross%3E2915105876%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2915105876&rft_id=info:pmid/&rfr_iscdi=true