A trustworthy neural architecture search framework for pneumonia image classification utilizing blockchain technology

A chest X-ray radiography is still the global standard for diagnosing pneumonia. Despite several studies, doctors still have trouble correctly diagnosing and classifying pneumonia. Neural architecture search (NAS) has the potential to enhance diagnostic efficiency and accuracy. However, NAS methods...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of supercomputing 2024, Vol.80 (2), p.1694-1727
Hauptverfasser: Yang, Yi, Wei, Jiaxuan, Yu, Zhixuan, Zhang, Ruisheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1727
container_issue 2
container_start_page 1694
container_title The Journal of supercomputing
container_volume 80
creator Yang, Yi
Wei, Jiaxuan
Yu, Zhixuan
Zhang, Ruisheng
description A chest X-ray radiography is still the global standard for diagnosing pneumonia. Despite several studies, doctors still have trouble correctly diagnosing and classifying pneumonia. Neural architecture search (NAS) has the potential to enhance diagnostic efficiency and accuracy. However, NAS methods fail to account for the security of data sources, and the result of model prediction cannot be communicated safely and consistently. To tackle these issues, we propose a trustworthy NAS method for pneumonia image classification using blockchain technology, which provides secure, reliable, and high-performance model automatic search and efficient data prediction capabilities. By synergistically combining NAS with blockchain technology, we enhance the transparency and interpretability of NAS-driven image classification processes, thereby safeguarding the confidentiality and integrity of sensitive medical information. Moreover, our approach automates the model construction process for pneumonia image classification, markedly reducing the reliance on manual intervention. Experimental results demonstrate that our method achieves comparable performance to state-of-the-art methods for pneumonia image classification while ensuring security. This provides a new solution for promoting medical aided diagnosis.
doi_str_mv 10.1007/s11227-023-05541-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2915103078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2915103078</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-9a1b09db4ff81e6032cecb6443fe77edd63382605e38ecb569cb9487863f4b0d3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVcB19WbR1_LYfAFghtdhzRN2sx0mjFJkfHXm7GCO1eXw_3OudyD0DWBWwJQ3gVCKC0zoCyDPOck4ydoQfIySV7xU7SAmkJW5Zyeo4sQNgDAWckWaFrh6KcQP52P_QGPevJywNKr3kat4uQ1DvoosfFypxO2xcZ5vE_kzo1WYruTncZqkCFYY5WM1o14inawX3bscDM4tVW9tCNOgf3oBtcdLtGZkUPQV79zid4f7t_WT9nL6-PzevWSKUbqmNWSNFC3DTemIroARpVWTcE5M7osddsWjFW0gFyzKi3yolZNzauyKpjhDbRsiW7m3L13H5MOUWzc5Md0UtCa5AQYlFWi6Ewp70Lw2oi9T1_5gyAgjvWKuV6R6hU_9QqeTGw2hQSPnfZ_0f-4vgEC-oDB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2915103078</pqid></control><display><type>article</type><title>A trustworthy neural architecture search framework for pneumonia image classification utilizing blockchain technology</title><source>SpringerNature Journals</source><creator>Yang, Yi ; Wei, Jiaxuan ; Yu, Zhixuan ; Zhang, Ruisheng</creator><creatorcontrib>Yang, Yi ; Wei, Jiaxuan ; Yu, Zhixuan ; Zhang, Ruisheng</creatorcontrib><description>A chest X-ray radiography is still the global standard for diagnosing pneumonia. Despite several studies, doctors still have trouble correctly diagnosing and classifying pneumonia. Neural architecture search (NAS) has the potential to enhance diagnostic efficiency and accuracy. However, NAS methods fail to account for the security of data sources, and the result of model prediction cannot be communicated safely and consistently. To tackle these issues, we propose a trustworthy NAS method for pneumonia image classification using blockchain technology, which provides secure, reliable, and high-performance model automatic search and efficient data prediction capabilities. By synergistically combining NAS with blockchain technology, we enhance the transparency and interpretability of NAS-driven image classification processes, thereby safeguarding the confidentiality and integrity of sensitive medical information. Moreover, our approach automates the model construction process for pneumonia image classification, markedly reducing the reliance on manual intervention. Experimental results demonstrate that our method achieves comparable performance to state-of-the-art methods for pneumonia image classification while ensuring security. This provides a new solution for promoting medical aided diagnosis.</description><identifier>ISSN: 0920-8542</identifier><identifier>EISSN: 1573-0484</identifier><identifier>DOI: 10.1007/s11227-023-05541-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Blockchain ; Classification ; Compilers ; Computer Science ; Cryptography ; Data search ; Image classification ; Image enhancement ; Interpreters ; Medical imaging ; Pneumonia ; Processor Architectures ; Programming Languages ; Security ; Trustworthiness ; X-ray radiography</subject><ispartof>The Journal of supercomputing, 2024, Vol.80 (2), p.1694-1727</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. corrected publication 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-9a1b09db4ff81e6032cecb6443fe77edd63382605e38ecb569cb9487863f4b0d3</citedby><cites>FETCH-LOGICAL-c319t-9a1b09db4ff81e6032cecb6443fe77edd63382605e38ecb569cb9487863f4b0d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11227-023-05541-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11227-023-05541-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Yang, Yi</creatorcontrib><creatorcontrib>Wei, Jiaxuan</creatorcontrib><creatorcontrib>Yu, Zhixuan</creatorcontrib><creatorcontrib>Zhang, Ruisheng</creatorcontrib><title>A trustworthy neural architecture search framework for pneumonia image classification utilizing blockchain technology</title><title>The Journal of supercomputing</title><addtitle>J Supercomput</addtitle><description>A chest X-ray radiography is still the global standard for diagnosing pneumonia. Despite several studies, doctors still have trouble correctly diagnosing and classifying pneumonia. Neural architecture search (NAS) has the potential to enhance diagnostic efficiency and accuracy. However, NAS methods fail to account for the security of data sources, and the result of model prediction cannot be communicated safely and consistently. To tackle these issues, we propose a trustworthy NAS method for pneumonia image classification using blockchain technology, which provides secure, reliable, and high-performance model automatic search and efficient data prediction capabilities. By synergistically combining NAS with blockchain technology, we enhance the transparency and interpretability of NAS-driven image classification processes, thereby safeguarding the confidentiality and integrity of sensitive medical information. Moreover, our approach automates the model construction process for pneumonia image classification, markedly reducing the reliance on manual intervention. Experimental results demonstrate that our method achieves comparable performance to state-of-the-art methods for pneumonia image classification while ensuring security. This provides a new solution for promoting medical aided diagnosis.</description><subject>Blockchain</subject><subject>Classification</subject><subject>Compilers</subject><subject>Computer Science</subject><subject>Cryptography</subject><subject>Data search</subject><subject>Image classification</subject><subject>Image enhancement</subject><subject>Interpreters</subject><subject>Medical imaging</subject><subject>Pneumonia</subject><subject>Processor Architectures</subject><subject>Programming Languages</subject><subject>Security</subject><subject>Trustworthiness</subject><subject>X-ray radiography</subject><issn>0920-8542</issn><issn>1573-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AVcB19WbR1_LYfAFghtdhzRN2sx0mjFJkfHXm7GCO1eXw_3OudyD0DWBWwJQ3gVCKC0zoCyDPOck4ydoQfIySV7xU7SAmkJW5Zyeo4sQNgDAWckWaFrh6KcQP52P_QGPevJywNKr3kat4uQ1DvoosfFypxO2xcZ5vE_kzo1WYruTncZqkCFYY5WM1o14inawX3bscDM4tVW9tCNOgf3oBtcdLtGZkUPQV79zid4f7t_WT9nL6-PzevWSKUbqmNWSNFC3DTemIroARpVWTcE5M7osddsWjFW0gFyzKi3yolZNzauyKpjhDbRsiW7m3L13H5MOUWzc5Md0UtCa5AQYlFWi6Ewp70Lw2oi9T1_5gyAgjvWKuV6R6hU_9QqeTGw2hQSPnfZ_0f-4vgEC-oDB</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Yang, Yi</creator><creator>Wei, Jiaxuan</creator><creator>Yu, Zhixuan</creator><creator>Zhang, Ruisheng</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>A trustworthy neural architecture search framework for pneumonia image classification utilizing blockchain technology</title><author>Yang, Yi ; Wei, Jiaxuan ; Yu, Zhixuan ; Zhang, Ruisheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-9a1b09db4ff81e6032cecb6443fe77edd63382605e38ecb569cb9487863f4b0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Blockchain</topic><topic>Classification</topic><topic>Compilers</topic><topic>Computer Science</topic><topic>Cryptography</topic><topic>Data search</topic><topic>Image classification</topic><topic>Image enhancement</topic><topic>Interpreters</topic><topic>Medical imaging</topic><topic>Pneumonia</topic><topic>Processor Architectures</topic><topic>Programming Languages</topic><topic>Security</topic><topic>Trustworthiness</topic><topic>X-ray radiography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yi</creatorcontrib><creatorcontrib>Wei, Jiaxuan</creatorcontrib><creatorcontrib>Yu, Zhixuan</creatorcontrib><creatorcontrib>Zhang, Ruisheng</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of supercomputing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Yi</au><au>Wei, Jiaxuan</au><au>Yu, Zhixuan</au><au>Zhang, Ruisheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A trustworthy neural architecture search framework for pneumonia image classification utilizing blockchain technology</atitle><jtitle>The Journal of supercomputing</jtitle><stitle>J Supercomput</stitle><date>2024</date><risdate>2024</risdate><volume>80</volume><issue>2</issue><spage>1694</spage><epage>1727</epage><pages>1694-1727</pages><issn>0920-8542</issn><eissn>1573-0484</eissn><abstract>A chest X-ray radiography is still the global standard for diagnosing pneumonia. Despite several studies, doctors still have trouble correctly diagnosing and classifying pneumonia. Neural architecture search (NAS) has the potential to enhance diagnostic efficiency and accuracy. However, NAS methods fail to account for the security of data sources, and the result of model prediction cannot be communicated safely and consistently. To tackle these issues, we propose a trustworthy NAS method for pneumonia image classification using blockchain technology, which provides secure, reliable, and high-performance model automatic search and efficient data prediction capabilities. By synergistically combining NAS with blockchain technology, we enhance the transparency and interpretability of NAS-driven image classification processes, thereby safeguarding the confidentiality and integrity of sensitive medical information. Moreover, our approach automates the model construction process for pneumonia image classification, markedly reducing the reliance on manual intervention. Experimental results demonstrate that our method achieves comparable performance to state-of-the-art methods for pneumonia image classification while ensuring security. This provides a new solution for promoting medical aided diagnosis.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11227-023-05541-4</doi><tpages>34</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0920-8542
ispartof The Journal of supercomputing, 2024, Vol.80 (2), p.1694-1727
issn 0920-8542
1573-0484
language eng
recordid cdi_proquest_journals_2915103078
source SpringerNature Journals
subjects Blockchain
Classification
Compilers
Computer Science
Cryptography
Data search
Image classification
Image enhancement
Interpreters
Medical imaging
Pneumonia
Processor Architectures
Programming Languages
Security
Trustworthiness
X-ray radiography
title A trustworthy neural architecture search framework for pneumonia image classification utilizing blockchain technology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T12%3A35%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20trustworthy%20neural%20architecture%20search%20framework%20for%20pneumonia%20image%20classification%20utilizing%20blockchain%20technology&rft.jtitle=The%20Journal%20of%20supercomputing&rft.au=Yang,%20Yi&rft.date=2024&rft.volume=80&rft.issue=2&rft.spage=1694&rft.epage=1727&rft.pages=1694-1727&rft.issn=0920-8542&rft.eissn=1573-0484&rft_id=info:doi/10.1007/s11227-023-05541-4&rft_dat=%3Cproquest_cross%3E2915103078%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2915103078&rft_id=info:pmid/&rfr_iscdi=true