Formate dehydrogenase activity by a Cu()-based molecular catalyst and deciphering the mechanism using DFT studies
Due to the requirement to establish renewable energy sources, formic acid (FA), one of the most probable liquid organic hydrogen carriers (LOHCs), has received great attention. Catalytic formic acid dehydrogenation in an effective and environmentally friendly manner is still a challenge. The N3Q3 li...
Gespeichert in:
Veröffentlicht in: | Dalton transactions : an international journal of inorganic chemistry 2024-01, Vol.53 (3), p.129-122 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 122 |
---|---|
container_issue | 3 |
container_start_page | 129 |
container_title | Dalton transactions : an international journal of inorganic chemistry |
container_volume | 53 |
creator | Mishra, Aman Srivastava, Diship Raj, Dev Patra, Niladri Padhi, Sumanta Kumar |
description | Due to the requirement to establish renewable energy sources, formic acid (FA), one of the most probable liquid organic hydrogen carriers (LOHCs), has received great attention. Catalytic formic acid dehydrogenation in an effective and environmentally friendly manner is still a challenge. The N3Q3 ligand (N3Q3 =
N
,
N
-bis(quinolin-8-ylmethyl)quinolin-8-amine) and the square pyramidal [Cu(N3Q3)Cl]Cl complex have been synthesised in this work and characterised using several techniques, such as NMR spectroscopy, mass spectrometry, EPR spectroscopy, cyclic voltammetry, X-ray diffraction and DFT calculations. This work investigates the dehydrogenation of formic acid using a molecular and homogeneous catalyst [Cu(N3Q3)Cl]Cl in the presence of HCOONa. The mononuclear copper complex exhibits catalytic activity towards the dehydrogenation of formic acid in H
2
O with the evolution of a 1 : 1 CO
2
and H
2
mixture. The activation energy of formic acid dehydrogenation was calculated to be
E
a
= 86 kJ mol
−1
, based on experiments carried out at various temperatures. The Gibbs free energy was found to be 82 kJ at 298 K for the decomposition of HCOOH. The DFT studies reveal that [Cu(N3Q3)(HCOO
−
)]
+
undergoes an uphill process of rearrangement followed by decarboxylation to generate [Cu(N3Q3)(H
−
)]
+
. The initial uphill step for forming a transition state is the rate-determining step. The [Cu(N3Q3)(H
−
)]
+
follows an activated state in the presence of HCOOH to liberate H
2
and generate the [Cu(N3Q3)(OH
2
)]
2+
.
A copper catalyst [Cu(N3Q3)Cl]Cl (N3Q3 =
N
,
N
-bis(quinolin-8-ylmethyl)quinolin-8-amine) has been employed for the dehydrogenation of formic acid. The thermodynamics and the kinetics have been depicted, and a mechanism deduced using DFT studies. |
doi_str_mv | 10.1039/d3dt03023g |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2915062424</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2903324866</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-ab78151e64415e7c33eee529de3d3ebde8d729a747d85c1df700723736afa31f3</originalsourceid><addsrcrecordid>eNpd0c1r2zAYBnAxVpas3WX3DcEuXcGtpFe27ONIlrRQ6CU9G1l6nTj4I5Xkgv_7qk2XQU8Sj356EXoI-c7ZNWdQ3FiwgQETsP1E5lwqlRQC5OfTXmQz8tX7PWNCsFR8ITPIOctlXszJ02pwnQ5ILe4m64Yt9toj1SY0z02YaDVRTRfj5e-kirml3dCiGVvtqNFBt5MPVPc23jbNYYeu6bc07JB2aHa6b3xHR_-aLVcb6sNoG_QX5KzWrcdv7-s5eVz93Sxuk_uH9d3iz31iAFRIdKVynnLMpOQpqhgiYioKi2ABK4u5VaLQSiqbp4bbWjGmBCjIdK2B13BOLo9zD254GtGHsmu8wbbVPQ6jL0XBAITMsyzSXx_ofhhdH18XFU9ZJqSQUV0dlXGD9w7r8uCaTrup5Kx8LaJcwnLzVsQ64p_vI8eqQ3ui_34-gh9H4Lw5nf5vEl4Ap3eNFw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2915062424</pqid></control><display><type>article</type><title>Formate dehydrogenase activity by a Cu()-based molecular catalyst and deciphering the mechanism using DFT studies</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Mishra, Aman ; Srivastava, Diship ; Raj, Dev ; Patra, Niladri ; Padhi, Sumanta Kumar</creator><creatorcontrib>Mishra, Aman ; Srivastava, Diship ; Raj, Dev ; Patra, Niladri ; Padhi, Sumanta Kumar</creatorcontrib><description>Due to the requirement to establish renewable energy sources, formic acid (FA), one of the most probable liquid organic hydrogen carriers (LOHCs), has received great attention. Catalytic formic acid dehydrogenation in an effective and environmentally friendly manner is still a challenge. The N3Q3 ligand (N3Q3 =
N
,
N
-bis(quinolin-8-ylmethyl)quinolin-8-amine) and the square pyramidal [Cu(N3Q3)Cl]Cl complex have been synthesised in this work and characterised using several techniques, such as NMR spectroscopy, mass spectrometry, EPR spectroscopy, cyclic voltammetry, X-ray diffraction and DFT calculations. This work investigates the dehydrogenation of formic acid using a molecular and homogeneous catalyst [Cu(N3Q3)Cl]Cl in the presence of HCOONa. The mononuclear copper complex exhibits catalytic activity towards the dehydrogenation of formic acid in H
2
O with the evolution of a 1 : 1 CO
2
and H
2
mixture. The activation energy of formic acid dehydrogenation was calculated to be
E
a
= 86 kJ mol
−1
, based on experiments carried out at various temperatures. The Gibbs free energy was found to be 82 kJ at 298 K for the decomposition of HCOOH. The DFT studies reveal that [Cu(N3Q3)(HCOO
−
)]
+
undergoes an uphill process of rearrangement followed by decarboxylation to generate [Cu(N3Q3)(H
−
)]
+
. The initial uphill step for forming a transition state is the rate-determining step. The [Cu(N3Q3)(H
−
)]
+
follows an activated state in the presence of HCOOH to liberate H
2
and generate the [Cu(N3Q3)(OH
2
)]
2+
.
A copper catalyst [Cu(N3Q3)Cl]Cl (N3Q3 =
N
,
N
-bis(quinolin-8-ylmethyl)quinolin-8-amine) has been employed for the dehydrogenation of formic acid. The thermodynamics and the kinetics have been depicted, and a mechanism deduced using DFT studies.</description><identifier>ISSN: 1477-9226</identifier><identifier>EISSN: 1477-9234</identifier><identifier>DOI: 10.1039/d3dt03023g</identifier><identifier>PMID: 38108489</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Acids ; Catalysts ; Catalytic activity ; Copper ; Copper compounds ; Decarboxylation ; Dehydrogenation ; Formate dehydrogenase ; Formic acid ; Gibbs free energy ; Mass spectrometry ; Mathematical analysis ; NMR spectroscopy ; Renewable energy sources</subject><ispartof>Dalton transactions : an international journal of inorganic chemistry, 2024-01, Vol.53 (3), p.129-122</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-ab78151e64415e7c33eee529de3d3ebde8d729a747d85c1df700723736afa31f3</citedby><cites>FETCH-LOGICAL-c337t-ab78151e64415e7c33eee529de3d3ebde8d729a747d85c1df700723736afa31f3</cites><orcidid>0000-0003-2415-0348 ; 0000-0003-2799-8336</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38108489$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mishra, Aman</creatorcontrib><creatorcontrib>Srivastava, Diship</creatorcontrib><creatorcontrib>Raj, Dev</creatorcontrib><creatorcontrib>Patra, Niladri</creatorcontrib><creatorcontrib>Padhi, Sumanta Kumar</creatorcontrib><title>Formate dehydrogenase activity by a Cu()-based molecular catalyst and deciphering the mechanism using DFT studies</title><title>Dalton transactions : an international journal of inorganic chemistry</title><addtitle>Dalton Trans</addtitle><description>Due to the requirement to establish renewable energy sources, formic acid (FA), one of the most probable liquid organic hydrogen carriers (LOHCs), has received great attention. Catalytic formic acid dehydrogenation in an effective and environmentally friendly manner is still a challenge. The N3Q3 ligand (N3Q3 =
N
,
N
-bis(quinolin-8-ylmethyl)quinolin-8-amine) and the square pyramidal [Cu(N3Q3)Cl]Cl complex have been synthesised in this work and characterised using several techniques, such as NMR spectroscopy, mass spectrometry, EPR spectroscopy, cyclic voltammetry, X-ray diffraction and DFT calculations. This work investigates the dehydrogenation of formic acid using a molecular and homogeneous catalyst [Cu(N3Q3)Cl]Cl in the presence of HCOONa. The mononuclear copper complex exhibits catalytic activity towards the dehydrogenation of formic acid in H
2
O with the evolution of a 1 : 1 CO
2
and H
2
mixture. The activation energy of formic acid dehydrogenation was calculated to be
E
a
= 86 kJ mol
−1
, based on experiments carried out at various temperatures. The Gibbs free energy was found to be 82 kJ at 298 K for the decomposition of HCOOH. The DFT studies reveal that [Cu(N3Q3)(HCOO
−
)]
+
undergoes an uphill process of rearrangement followed by decarboxylation to generate [Cu(N3Q3)(H
−
)]
+
. The initial uphill step for forming a transition state is the rate-determining step. The [Cu(N3Q3)(H
−
)]
+
follows an activated state in the presence of HCOOH to liberate H
2
and generate the [Cu(N3Q3)(OH
2
)]
2+
.
A copper catalyst [Cu(N3Q3)Cl]Cl (N3Q3 =
N
,
N
-bis(quinolin-8-ylmethyl)quinolin-8-amine) has been employed for the dehydrogenation of formic acid. The thermodynamics and the kinetics have been depicted, and a mechanism deduced using DFT studies.</description><subject>Acids</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Copper</subject><subject>Copper compounds</subject><subject>Decarboxylation</subject><subject>Dehydrogenation</subject><subject>Formate dehydrogenase</subject><subject>Formic acid</subject><subject>Gibbs free energy</subject><subject>Mass spectrometry</subject><subject>Mathematical analysis</subject><subject>NMR spectroscopy</subject><subject>Renewable energy sources</subject><issn>1477-9226</issn><issn>1477-9234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpd0c1r2zAYBnAxVpas3WX3DcEuXcGtpFe27ONIlrRQ6CU9G1l6nTj4I5Xkgv_7qk2XQU8Sj356EXoI-c7ZNWdQ3FiwgQETsP1E5lwqlRQC5OfTXmQz8tX7PWNCsFR8ITPIOctlXszJ02pwnQ5ILe4m64Yt9toj1SY0z02YaDVRTRfj5e-kirml3dCiGVvtqNFBt5MPVPc23jbNYYeu6bc07JB2aHa6b3xHR_-aLVcb6sNoG_QX5KzWrcdv7-s5eVz93Sxuk_uH9d3iz31iAFRIdKVynnLMpOQpqhgiYioKi2ABK4u5VaLQSiqbp4bbWjGmBCjIdK2B13BOLo9zD254GtGHsmu8wbbVPQ6jL0XBAITMsyzSXx_ofhhdH18XFU9ZJqSQUV0dlXGD9w7r8uCaTrup5Kx8LaJcwnLzVsQ64p_vI8eqQ3ui_34-gh9H4Lw5nf5vEl4Ap3eNFw</recordid><startdate>20240116</startdate><enddate>20240116</enddate><creator>Mishra, Aman</creator><creator>Srivastava, Diship</creator><creator>Raj, Dev</creator><creator>Patra, Niladri</creator><creator>Padhi, Sumanta Kumar</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2415-0348</orcidid><orcidid>https://orcid.org/0000-0003-2799-8336</orcidid></search><sort><creationdate>20240116</creationdate><title>Formate dehydrogenase activity by a Cu()-based molecular catalyst and deciphering the mechanism using DFT studies</title><author>Mishra, Aman ; Srivastava, Diship ; Raj, Dev ; Patra, Niladri ; Padhi, Sumanta Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-ab78151e64415e7c33eee529de3d3ebde8d729a747d85c1df700723736afa31f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acids</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Copper</topic><topic>Copper compounds</topic><topic>Decarboxylation</topic><topic>Dehydrogenation</topic><topic>Formate dehydrogenase</topic><topic>Formic acid</topic><topic>Gibbs free energy</topic><topic>Mass spectrometry</topic><topic>Mathematical analysis</topic><topic>NMR spectroscopy</topic><topic>Renewable energy sources</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mishra, Aman</creatorcontrib><creatorcontrib>Srivastava, Diship</creatorcontrib><creatorcontrib>Raj, Dev</creatorcontrib><creatorcontrib>Patra, Niladri</creatorcontrib><creatorcontrib>Padhi, Sumanta Kumar</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mishra, Aman</au><au>Srivastava, Diship</au><au>Raj, Dev</au><au>Patra, Niladri</au><au>Padhi, Sumanta Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formate dehydrogenase activity by a Cu()-based molecular catalyst and deciphering the mechanism using DFT studies</atitle><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle><addtitle>Dalton Trans</addtitle><date>2024-01-16</date><risdate>2024</risdate><volume>53</volume><issue>3</issue><spage>129</spage><epage>122</epage><pages>129-122</pages><issn>1477-9226</issn><eissn>1477-9234</eissn><abstract>Due to the requirement to establish renewable energy sources, formic acid (FA), one of the most probable liquid organic hydrogen carriers (LOHCs), has received great attention. Catalytic formic acid dehydrogenation in an effective and environmentally friendly manner is still a challenge. The N3Q3 ligand (N3Q3 =
N
,
N
-bis(quinolin-8-ylmethyl)quinolin-8-amine) and the square pyramidal [Cu(N3Q3)Cl]Cl complex have been synthesised in this work and characterised using several techniques, such as NMR spectroscopy, mass spectrometry, EPR spectroscopy, cyclic voltammetry, X-ray diffraction and DFT calculations. This work investigates the dehydrogenation of formic acid using a molecular and homogeneous catalyst [Cu(N3Q3)Cl]Cl in the presence of HCOONa. The mononuclear copper complex exhibits catalytic activity towards the dehydrogenation of formic acid in H
2
O with the evolution of a 1 : 1 CO
2
and H
2
mixture. The activation energy of formic acid dehydrogenation was calculated to be
E
a
= 86 kJ mol
−1
, based on experiments carried out at various temperatures. The Gibbs free energy was found to be 82 kJ at 298 K for the decomposition of HCOOH. The DFT studies reveal that [Cu(N3Q3)(HCOO
−
)]
+
undergoes an uphill process of rearrangement followed by decarboxylation to generate [Cu(N3Q3)(H
−
)]
+
. The initial uphill step for forming a transition state is the rate-determining step. The [Cu(N3Q3)(H
−
)]
+
follows an activated state in the presence of HCOOH to liberate H
2
and generate the [Cu(N3Q3)(OH
2
)]
2+
.
A copper catalyst [Cu(N3Q3)Cl]Cl (N3Q3 =
N
,
N
-bis(quinolin-8-ylmethyl)quinolin-8-amine) has been employed for the dehydrogenation of formic acid. The thermodynamics and the kinetics have been depicted, and a mechanism deduced using DFT studies.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>38108489</pmid><doi>10.1039/d3dt03023g</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2415-0348</orcidid><orcidid>https://orcid.org/0000-0003-2799-8336</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1477-9226 |
ispartof | Dalton transactions : an international journal of inorganic chemistry, 2024-01, Vol.53 (3), p.129-122 |
issn | 1477-9226 1477-9234 |
language | eng |
recordid | cdi_proquest_journals_2915062424 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Acids Catalysts Catalytic activity Copper Copper compounds Decarboxylation Dehydrogenation Formate dehydrogenase Formic acid Gibbs free energy Mass spectrometry Mathematical analysis NMR spectroscopy Renewable energy sources |
title | Formate dehydrogenase activity by a Cu()-based molecular catalyst and deciphering the mechanism using DFT studies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T23%3A56%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formate%20dehydrogenase%20activity%20by%20a%20Cu()-based%20molecular%20catalyst%20and%20deciphering%20the%20mechanism%20using%20DFT%20studies&rft.jtitle=Dalton%20transactions%20:%20an%20international%20journal%20of%20inorganic%20chemistry&rft.au=Mishra,%20Aman&rft.date=2024-01-16&rft.volume=53&rft.issue=3&rft.spage=129&rft.epage=122&rft.pages=129-122&rft.issn=1477-9226&rft.eissn=1477-9234&rft_id=info:doi/10.1039/d3dt03023g&rft_dat=%3Cproquest_cross%3E2903324866%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2915062424&rft_id=info:pmid/38108489&rfr_iscdi=true |