Formate dehydrogenase activity by a Cu()-based molecular catalyst and deciphering the mechanism using DFT studies

Due to the requirement to establish renewable energy sources, formic acid (FA), one of the most probable liquid organic hydrogen carriers (LOHCs), has received great attention. Catalytic formic acid dehydrogenation in an effective and environmentally friendly manner is still a challenge. The N3Q3 li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dalton transactions : an international journal of inorganic chemistry 2024-01, Vol.53 (3), p.129-122
Hauptverfasser: Mishra, Aman, Srivastava, Diship, Raj, Dev, Patra, Niladri, Padhi, Sumanta Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 122
container_issue 3
container_start_page 129
container_title Dalton transactions : an international journal of inorganic chemistry
container_volume 53
creator Mishra, Aman
Srivastava, Diship
Raj, Dev
Patra, Niladri
Padhi, Sumanta Kumar
description Due to the requirement to establish renewable energy sources, formic acid (FA), one of the most probable liquid organic hydrogen carriers (LOHCs), has received great attention. Catalytic formic acid dehydrogenation in an effective and environmentally friendly manner is still a challenge. The N3Q3 ligand (N3Q3 = N , N -bis(quinolin-8-ylmethyl)quinolin-8-amine) and the square pyramidal [Cu(N3Q3)Cl]Cl complex have been synthesised in this work and characterised using several techniques, such as NMR spectroscopy, mass spectrometry, EPR spectroscopy, cyclic voltammetry, X-ray diffraction and DFT calculations. This work investigates the dehydrogenation of formic acid using a molecular and homogeneous catalyst [Cu(N3Q3)Cl]Cl in the presence of HCOONa. The mononuclear copper complex exhibits catalytic activity towards the dehydrogenation of formic acid in H 2 O with the evolution of a 1 : 1 CO 2 and H 2 mixture. The activation energy of formic acid dehydrogenation was calculated to be E a = 86 kJ mol −1 , based on experiments carried out at various temperatures. The Gibbs free energy was found to be 82 kJ at 298 K for the decomposition of HCOOH. The DFT studies reveal that [Cu(N3Q3)(HCOO − )] + undergoes an uphill process of rearrangement followed by decarboxylation to generate [Cu(N3Q3)(H − )] + . The initial uphill step for forming a transition state is the rate-determining step. The [Cu(N3Q3)(H − )] + follows an activated state in the presence of HCOOH to liberate H 2 and generate the [Cu(N3Q3)(OH 2 )] 2+ . A copper catalyst [Cu(N3Q3)Cl]Cl (N3Q3 = N , N -bis(quinolin-8-ylmethyl)quinolin-8-amine) has been employed for the dehydrogenation of formic acid. The thermodynamics and the kinetics have been depicted, and a mechanism deduced using DFT studies.
doi_str_mv 10.1039/d3dt03023g
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2915062424</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2903324866</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-ab78151e64415e7c33eee529de3d3ebde8d729a747d85c1df700723736afa31f3</originalsourceid><addsrcrecordid>eNpd0c1r2zAYBnAxVpas3WX3DcEuXcGtpFe27ONIlrRQ6CU9G1l6nTj4I5Xkgv_7qk2XQU8Sj356EXoI-c7ZNWdQ3FiwgQETsP1E5lwqlRQC5OfTXmQz8tX7PWNCsFR8ITPIOctlXszJ02pwnQ5ILe4m64Yt9toj1SY0z02YaDVRTRfj5e-kirml3dCiGVvtqNFBt5MPVPc23jbNYYeu6bc07JB2aHa6b3xHR_-aLVcb6sNoG_QX5KzWrcdv7-s5eVz93Sxuk_uH9d3iz31iAFRIdKVynnLMpOQpqhgiYioKi2ABK4u5VaLQSiqbp4bbWjGmBCjIdK2B13BOLo9zD254GtGHsmu8wbbVPQ6jL0XBAITMsyzSXx_ofhhdH18XFU9ZJqSQUV0dlXGD9w7r8uCaTrup5Kx8LaJcwnLzVsQ64p_vI8eqQ3ui_34-gh9H4Lw5nf5vEl4Ap3eNFw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2915062424</pqid></control><display><type>article</type><title>Formate dehydrogenase activity by a Cu()-based molecular catalyst and deciphering the mechanism using DFT studies</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Mishra, Aman ; Srivastava, Diship ; Raj, Dev ; Patra, Niladri ; Padhi, Sumanta Kumar</creator><creatorcontrib>Mishra, Aman ; Srivastava, Diship ; Raj, Dev ; Patra, Niladri ; Padhi, Sumanta Kumar</creatorcontrib><description>Due to the requirement to establish renewable energy sources, formic acid (FA), one of the most probable liquid organic hydrogen carriers (LOHCs), has received great attention. Catalytic formic acid dehydrogenation in an effective and environmentally friendly manner is still a challenge. The N3Q3 ligand (N3Q3 = N , N -bis(quinolin-8-ylmethyl)quinolin-8-amine) and the square pyramidal [Cu(N3Q3)Cl]Cl complex have been synthesised in this work and characterised using several techniques, such as NMR spectroscopy, mass spectrometry, EPR spectroscopy, cyclic voltammetry, X-ray diffraction and DFT calculations. This work investigates the dehydrogenation of formic acid using a molecular and homogeneous catalyst [Cu(N3Q3)Cl]Cl in the presence of HCOONa. The mononuclear copper complex exhibits catalytic activity towards the dehydrogenation of formic acid in H 2 O with the evolution of a 1 : 1 CO 2 and H 2 mixture. The activation energy of formic acid dehydrogenation was calculated to be E a = 86 kJ mol −1 , based on experiments carried out at various temperatures. The Gibbs free energy was found to be 82 kJ at 298 K for the decomposition of HCOOH. The DFT studies reveal that [Cu(N3Q3)(HCOO − )] + undergoes an uphill process of rearrangement followed by decarboxylation to generate [Cu(N3Q3)(H − )] + . The initial uphill step for forming a transition state is the rate-determining step. The [Cu(N3Q3)(H − )] + follows an activated state in the presence of HCOOH to liberate H 2 and generate the [Cu(N3Q3)(OH 2 )] 2+ . A copper catalyst [Cu(N3Q3)Cl]Cl (N3Q3 = N , N -bis(quinolin-8-ylmethyl)quinolin-8-amine) has been employed for the dehydrogenation of formic acid. The thermodynamics and the kinetics have been depicted, and a mechanism deduced using DFT studies.</description><identifier>ISSN: 1477-9226</identifier><identifier>EISSN: 1477-9234</identifier><identifier>DOI: 10.1039/d3dt03023g</identifier><identifier>PMID: 38108489</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Acids ; Catalysts ; Catalytic activity ; Copper ; Copper compounds ; Decarboxylation ; Dehydrogenation ; Formate dehydrogenase ; Formic acid ; Gibbs free energy ; Mass spectrometry ; Mathematical analysis ; NMR spectroscopy ; Renewable energy sources</subject><ispartof>Dalton transactions : an international journal of inorganic chemistry, 2024-01, Vol.53 (3), p.129-122</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-ab78151e64415e7c33eee529de3d3ebde8d729a747d85c1df700723736afa31f3</citedby><cites>FETCH-LOGICAL-c337t-ab78151e64415e7c33eee529de3d3ebde8d729a747d85c1df700723736afa31f3</cites><orcidid>0000-0003-2415-0348 ; 0000-0003-2799-8336</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38108489$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mishra, Aman</creatorcontrib><creatorcontrib>Srivastava, Diship</creatorcontrib><creatorcontrib>Raj, Dev</creatorcontrib><creatorcontrib>Patra, Niladri</creatorcontrib><creatorcontrib>Padhi, Sumanta Kumar</creatorcontrib><title>Formate dehydrogenase activity by a Cu()-based molecular catalyst and deciphering the mechanism using DFT studies</title><title>Dalton transactions : an international journal of inorganic chemistry</title><addtitle>Dalton Trans</addtitle><description>Due to the requirement to establish renewable energy sources, formic acid (FA), one of the most probable liquid organic hydrogen carriers (LOHCs), has received great attention. Catalytic formic acid dehydrogenation in an effective and environmentally friendly manner is still a challenge. The N3Q3 ligand (N3Q3 = N , N -bis(quinolin-8-ylmethyl)quinolin-8-amine) and the square pyramidal [Cu(N3Q3)Cl]Cl complex have been synthesised in this work and characterised using several techniques, such as NMR spectroscopy, mass spectrometry, EPR spectroscopy, cyclic voltammetry, X-ray diffraction and DFT calculations. This work investigates the dehydrogenation of formic acid using a molecular and homogeneous catalyst [Cu(N3Q3)Cl]Cl in the presence of HCOONa. The mononuclear copper complex exhibits catalytic activity towards the dehydrogenation of formic acid in H 2 O with the evolution of a 1 : 1 CO 2 and H 2 mixture. The activation energy of formic acid dehydrogenation was calculated to be E a = 86 kJ mol −1 , based on experiments carried out at various temperatures. The Gibbs free energy was found to be 82 kJ at 298 K for the decomposition of HCOOH. The DFT studies reveal that [Cu(N3Q3)(HCOO − )] + undergoes an uphill process of rearrangement followed by decarboxylation to generate [Cu(N3Q3)(H − )] + . The initial uphill step for forming a transition state is the rate-determining step. The [Cu(N3Q3)(H − )] + follows an activated state in the presence of HCOOH to liberate H 2 and generate the [Cu(N3Q3)(OH 2 )] 2+ . A copper catalyst [Cu(N3Q3)Cl]Cl (N3Q3 = N , N -bis(quinolin-8-ylmethyl)quinolin-8-amine) has been employed for the dehydrogenation of formic acid. The thermodynamics and the kinetics have been depicted, and a mechanism deduced using DFT studies.</description><subject>Acids</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Copper</subject><subject>Copper compounds</subject><subject>Decarboxylation</subject><subject>Dehydrogenation</subject><subject>Formate dehydrogenase</subject><subject>Formic acid</subject><subject>Gibbs free energy</subject><subject>Mass spectrometry</subject><subject>Mathematical analysis</subject><subject>NMR spectroscopy</subject><subject>Renewable energy sources</subject><issn>1477-9226</issn><issn>1477-9234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpd0c1r2zAYBnAxVpas3WX3DcEuXcGtpFe27ONIlrRQ6CU9G1l6nTj4I5Xkgv_7qk2XQU8Sj356EXoI-c7ZNWdQ3FiwgQETsP1E5lwqlRQC5OfTXmQz8tX7PWNCsFR8ITPIOctlXszJ02pwnQ5ILe4m64Yt9toj1SY0z02YaDVRTRfj5e-kirml3dCiGVvtqNFBt5MPVPc23jbNYYeu6bc07JB2aHa6b3xHR_-aLVcb6sNoG_QX5KzWrcdv7-s5eVz93Sxuk_uH9d3iz31iAFRIdKVynnLMpOQpqhgiYioKi2ABK4u5VaLQSiqbp4bbWjGmBCjIdK2B13BOLo9zD254GtGHsmu8wbbVPQ6jL0XBAITMsyzSXx_ofhhdH18XFU9ZJqSQUV0dlXGD9w7r8uCaTrup5Kx8LaJcwnLzVsQ64p_vI8eqQ3ui_34-gh9H4Lw5nf5vEl4Ap3eNFw</recordid><startdate>20240116</startdate><enddate>20240116</enddate><creator>Mishra, Aman</creator><creator>Srivastava, Diship</creator><creator>Raj, Dev</creator><creator>Patra, Niladri</creator><creator>Padhi, Sumanta Kumar</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2415-0348</orcidid><orcidid>https://orcid.org/0000-0003-2799-8336</orcidid></search><sort><creationdate>20240116</creationdate><title>Formate dehydrogenase activity by a Cu()-based molecular catalyst and deciphering the mechanism using DFT studies</title><author>Mishra, Aman ; Srivastava, Diship ; Raj, Dev ; Patra, Niladri ; Padhi, Sumanta Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-ab78151e64415e7c33eee529de3d3ebde8d729a747d85c1df700723736afa31f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acids</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Copper</topic><topic>Copper compounds</topic><topic>Decarboxylation</topic><topic>Dehydrogenation</topic><topic>Formate dehydrogenase</topic><topic>Formic acid</topic><topic>Gibbs free energy</topic><topic>Mass spectrometry</topic><topic>Mathematical analysis</topic><topic>NMR spectroscopy</topic><topic>Renewable energy sources</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mishra, Aman</creatorcontrib><creatorcontrib>Srivastava, Diship</creatorcontrib><creatorcontrib>Raj, Dev</creatorcontrib><creatorcontrib>Patra, Niladri</creatorcontrib><creatorcontrib>Padhi, Sumanta Kumar</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mishra, Aman</au><au>Srivastava, Diship</au><au>Raj, Dev</au><au>Patra, Niladri</au><au>Padhi, Sumanta Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formate dehydrogenase activity by a Cu()-based molecular catalyst and deciphering the mechanism using DFT studies</atitle><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle><addtitle>Dalton Trans</addtitle><date>2024-01-16</date><risdate>2024</risdate><volume>53</volume><issue>3</issue><spage>129</spage><epage>122</epage><pages>129-122</pages><issn>1477-9226</issn><eissn>1477-9234</eissn><abstract>Due to the requirement to establish renewable energy sources, formic acid (FA), one of the most probable liquid organic hydrogen carriers (LOHCs), has received great attention. Catalytic formic acid dehydrogenation in an effective and environmentally friendly manner is still a challenge. The N3Q3 ligand (N3Q3 = N , N -bis(quinolin-8-ylmethyl)quinolin-8-amine) and the square pyramidal [Cu(N3Q3)Cl]Cl complex have been synthesised in this work and characterised using several techniques, such as NMR spectroscopy, mass spectrometry, EPR spectroscopy, cyclic voltammetry, X-ray diffraction and DFT calculations. This work investigates the dehydrogenation of formic acid using a molecular and homogeneous catalyst [Cu(N3Q3)Cl]Cl in the presence of HCOONa. The mononuclear copper complex exhibits catalytic activity towards the dehydrogenation of formic acid in H 2 O with the evolution of a 1 : 1 CO 2 and H 2 mixture. The activation energy of formic acid dehydrogenation was calculated to be E a = 86 kJ mol −1 , based on experiments carried out at various temperatures. The Gibbs free energy was found to be 82 kJ at 298 K for the decomposition of HCOOH. The DFT studies reveal that [Cu(N3Q3)(HCOO − )] + undergoes an uphill process of rearrangement followed by decarboxylation to generate [Cu(N3Q3)(H − )] + . The initial uphill step for forming a transition state is the rate-determining step. The [Cu(N3Q3)(H − )] + follows an activated state in the presence of HCOOH to liberate H 2 and generate the [Cu(N3Q3)(OH 2 )] 2+ . A copper catalyst [Cu(N3Q3)Cl]Cl (N3Q3 = N , N -bis(quinolin-8-ylmethyl)quinolin-8-amine) has been employed for the dehydrogenation of formic acid. The thermodynamics and the kinetics have been depicted, and a mechanism deduced using DFT studies.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>38108489</pmid><doi>10.1039/d3dt03023g</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2415-0348</orcidid><orcidid>https://orcid.org/0000-0003-2799-8336</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1477-9226
ispartof Dalton transactions : an international journal of inorganic chemistry, 2024-01, Vol.53 (3), p.129-122
issn 1477-9226
1477-9234
language eng
recordid cdi_proquest_journals_2915062424
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Acids
Catalysts
Catalytic activity
Copper
Copper compounds
Decarboxylation
Dehydrogenation
Formate dehydrogenase
Formic acid
Gibbs free energy
Mass spectrometry
Mathematical analysis
NMR spectroscopy
Renewable energy sources
title Formate dehydrogenase activity by a Cu()-based molecular catalyst and deciphering the mechanism using DFT studies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T23%3A56%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formate%20dehydrogenase%20activity%20by%20a%20Cu()-based%20molecular%20catalyst%20and%20deciphering%20the%20mechanism%20using%20DFT%20studies&rft.jtitle=Dalton%20transactions%20:%20an%20international%20journal%20of%20inorganic%20chemistry&rft.au=Mishra,%20Aman&rft.date=2024-01-16&rft.volume=53&rft.issue=3&rft.spage=129&rft.epage=122&rft.pages=129-122&rft.issn=1477-9226&rft.eissn=1477-9234&rft_id=info:doi/10.1039/d3dt03023g&rft_dat=%3Cproquest_cross%3E2903324866%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2915062424&rft_id=info:pmid/38108489&rfr_iscdi=true