End to end Hindi to English speech conversion using Bark, mBART and a finetuned XLSR Wav2Vec2

Speech has long been a barrier to effective communication and connection, persisting as a challenge in our increasingly interconnected world. This research paper introduces a transformative solution to this persistent obstacle an end-to-end speech conversion framework tailored for Hindi-to-English t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-01
Hauptverfasser: Tathe, Aniket, Kamble, Anand, Kumbharkar, Suyash, Bhandare, Atharva, Mitra, Anirban C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Tathe, Aniket
Kamble, Anand
Kumbharkar, Suyash
Bhandare, Atharva
Mitra, Anirban C
description Speech has long been a barrier to effective communication and connection, persisting as a challenge in our increasingly interconnected world. This research paper introduces a transformative solution to this persistent obstacle an end-to-end speech conversion framework tailored for Hindi-to-English translation, culminating in the synthesis of English audio. By integrating cutting-edge technologies such as XLSR Wav2Vec2 for automatic speech recognition (ASR), mBART for neural machine translation (NMT), and a Text-to-Speech (TTS) synthesis component, this framework offers a unified and seamless approach to cross-lingual communication. We delve into the intricate details of each component, elucidating their individual contributions and exploring the synergies that enable a fluid transition from spoken Hindi to synthesized English audio.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2914968925</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2914968925</sourcerecordid><originalsourceid>FETCH-proquest_journals_29149689253</originalsourceid><addsrcrecordid>eNqNi80KgkAURocgKMp3uNA2Qa8_5TLDaNHKpNqEDHqrKbtjjvb8GfQArQ4f5zsDMUbPc-2ljzgSljF3x3EwXGAQeGNxTriEVgP12Cou1XckfK2UuYGpiYobFJrf1BilGTqj-AqxbB5zeMarNAPZhxIuiqntmEo47fYpHOUbD1TgVAwvsjJk_TgRs02Srbd23ehXR6bN77pruFc5Rq4fhcsIA--_1wfSl0Fv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2914968925</pqid></control><display><type>article</type><title>End to end Hindi to English speech conversion using Bark, mBART and a finetuned XLSR Wav2Vec2</title><source>Freely Accessible Journals</source><creator>Tathe, Aniket ; Kamble, Anand ; Kumbharkar, Suyash ; Bhandare, Atharva ; Mitra, Anirban C</creator><creatorcontrib>Tathe, Aniket ; Kamble, Anand ; Kumbharkar, Suyash ; Bhandare, Atharva ; Mitra, Anirban C</creatorcontrib><description>Speech has long been a barrier to effective communication and connection, persisting as a challenge in our increasingly interconnected world. This research paper introduces a transformative solution to this persistent obstacle an end-to-end speech conversion framework tailored for Hindi-to-English translation, culminating in the synthesis of English audio. By integrating cutting-edge technologies such as XLSR Wav2Vec2 for automatic speech recognition (ASR), mBART for neural machine translation (NMT), and a Text-to-Speech (TTS) synthesis component, this framework offers a unified and seamless approach to cross-lingual communication. We delve into the intricate details of each component, elucidating their individual contributions and exploring the synergies that enable a fluid transition from spoken Hindi to synthesized English audio.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Automatic speech recognition ; English language ; Machine translation ; Synthesis</subject><ispartof>arXiv.org, 2024-01</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Tathe, Aniket</creatorcontrib><creatorcontrib>Kamble, Anand</creatorcontrib><creatorcontrib>Kumbharkar, Suyash</creatorcontrib><creatorcontrib>Bhandare, Atharva</creatorcontrib><creatorcontrib>Mitra, Anirban C</creatorcontrib><title>End to end Hindi to English speech conversion using Bark, mBART and a finetuned XLSR Wav2Vec2</title><title>arXiv.org</title><description>Speech has long been a barrier to effective communication and connection, persisting as a challenge in our increasingly interconnected world. This research paper introduces a transformative solution to this persistent obstacle an end-to-end speech conversion framework tailored for Hindi-to-English translation, culminating in the synthesis of English audio. By integrating cutting-edge technologies such as XLSR Wav2Vec2 for automatic speech recognition (ASR), mBART for neural machine translation (NMT), and a Text-to-Speech (TTS) synthesis component, this framework offers a unified and seamless approach to cross-lingual communication. We delve into the intricate details of each component, elucidating their individual contributions and exploring the synergies that enable a fluid transition from spoken Hindi to synthesized English audio.</description><subject>Automatic speech recognition</subject><subject>English language</subject><subject>Machine translation</subject><subject>Synthesis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi80KgkAURocgKMp3uNA2Qa8_5TLDaNHKpNqEDHqrKbtjjvb8GfQArQ4f5zsDMUbPc-2ljzgSljF3x3EwXGAQeGNxTriEVgP12Cou1XckfK2UuYGpiYobFJrf1BilGTqj-AqxbB5zeMarNAPZhxIuiqntmEo47fYpHOUbD1TgVAwvsjJk_TgRs02Srbd23ehXR6bN77pruFc5Rq4fhcsIA--_1wfSl0Fv</recordid><startdate>20240111</startdate><enddate>20240111</enddate><creator>Tathe, Aniket</creator><creator>Kamble, Anand</creator><creator>Kumbharkar, Suyash</creator><creator>Bhandare, Atharva</creator><creator>Mitra, Anirban C</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240111</creationdate><title>End to end Hindi to English speech conversion using Bark, mBART and a finetuned XLSR Wav2Vec2</title><author>Tathe, Aniket ; Kamble, Anand ; Kumbharkar, Suyash ; Bhandare, Atharva ; Mitra, Anirban C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29149689253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Automatic speech recognition</topic><topic>English language</topic><topic>Machine translation</topic><topic>Synthesis</topic><toplevel>online_resources</toplevel><creatorcontrib>Tathe, Aniket</creatorcontrib><creatorcontrib>Kamble, Anand</creatorcontrib><creatorcontrib>Kumbharkar, Suyash</creatorcontrib><creatorcontrib>Bhandare, Atharva</creatorcontrib><creatorcontrib>Mitra, Anirban C</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tathe, Aniket</au><au>Kamble, Anand</au><au>Kumbharkar, Suyash</au><au>Bhandare, Atharva</au><au>Mitra, Anirban C</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>End to end Hindi to English speech conversion using Bark, mBART and a finetuned XLSR Wav2Vec2</atitle><jtitle>arXiv.org</jtitle><date>2024-01-11</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Speech has long been a barrier to effective communication and connection, persisting as a challenge in our increasingly interconnected world. This research paper introduces a transformative solution to this persistent obstacle an end-to-end speech conversion framework tailored for Hindi-to-English translation, culminating in the synthesis of English audio. By integrating cutting-edge technologies such as XLSR Wav2Vec2 for automatic speech recognition (ASR), mBART for neural machine translation (NMT), and a Text-to-Speech (TTS) synthesis component, this framework offers a unified and seamless approach to cross-lingual communication. We delve into the intricate details of each component, elucidating their individual contributions and exploring the synergies that enable a fluid transition from spoken Hindi to synthesized English audio.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2914968925
source Freely Accessible Journals
subjects Automatic speech recognition
English language
Machine translation
Synthesis
title End to end Hindi to English speech conversion using Bark, mBART and a finetuned XLSR Wav2Vec2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T13%3A47%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=End%20to%20end%20Hindi%20to%20English%20speech%20conversion%20using%20Bark,%20mBART%20and%20a%20finetuned%20XLSR%20Wav2Vec2&rft.jtitle=arXiv.org&rft.au=Tathe,%20Aniket&rft.date=2024-01-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2914968925%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2914968925&rft_id=info:pmid/&rfr_iscdi=true