Establishing regional intensity-duration-frequency (IDF) relationships by using the L-moment approach and genetically based techniques for the Euphrates-Tigris basin
Regional intensity-duration-frequency (IDF) relationships for the Euphrates-Tigris basin were established using genetic programming (GP) and multi-gene genetic programming (MGGP). The regional homogeneity of the study area was provided with two sub-regions (SRI and SRII) using the L-moment method. E...
Gespeichert in:
Veröffentlicht in: | Theoretical and applied climatology 2024-02, Vol.155 (2), p.1363-1380 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1380 |
---|---|
container_issue | 2 |
container_start_page | 1363 |
container_title | Theoretical and applied climatology |
container_volume | 155 |
creator | Hinis, Mehmet Ali Yurekli, Kadri Erdogan, Muberra |
description | Regional intensity-duration-frequency (IDF) relationships for the Euphrates-Tigris basin were established using genetic programming (GP) and multi-gene genetic programming (MGGP). The regional homogeneity of the study area was provided with two sub-regions (SRI and SRII) using the L-moment method. Estimated intensity values for various recurrence periods from selected regional distributions, new IDF relationships were established through GP and MGGP approaches, and the successful results were compared with the results obtained from the distributions. In addition, the parameters of 11 empirical equations commonly used in the literature for rainfall intensities were determined according to particle swarm optimization (PSO), artificial bee colony (ABC), genetic algorithm (GA), and flow direction algorithm (FDA) optimization methods. The rainfall intensity results of both the new IDF equations established with GP and MGGP techniques and the highest-performing empirical equations showed that the closest findings to the data set from regional distributions were obtained with MGGP for SRI and GP for SRII.
Graphical Abstract |
doi_str_mv | 10.1007/s00704-023-04695-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2914939433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2914939433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-904943ffb66282c7e6ef558691d65217c0318142015c601a997ecb54adbfa5e93</originalsourceid><addsrcrecordid>eNp9kc1u3CAYRVHUSp2mfYGukLJpF6T8GcyySic_0kjdpFJ3FsafbSIPdgEv_EB9zzIzlbLrBiQ49_CJi9AnRm8ZpfprKguVhHJBqFSmIvUV2jEpJJGyFm_QjjKtiTb1r3fofUovlFKulN6hP_uUbTv5NPow4AiDn4OdsA8ZQvJ5I90abS6HpI_we4XgNvz56fv9l8JO54uSXBJuN7ymkyKPgA_kOB8hZGyXJc7WjdiGDg8QIHtnp2nDrU3Q4QxuDL5YE-7neI7u12UsD0Iiz36IPp1IHz6gt72dEnz8t1-jn_f757tHcvjx8HT37UAc1zQTQ6WRou9bpXjNnQYFfVXVyrBOVZxpRwWrmeSUVU5RZo3R4NpK2q7tbQVGXKObi7eMfRorNy_zGsuHpIYbJo0oelEofqFcnFOK0DdL9Ecbt4bR5lRHc6mjKXU05zqauoTEJZQKHAaIr-r_pP4C8WWQtg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2914939433</pqid></control><display><type>article</type><title>Establishing regional intensity-duration-frequency (IDF) relationships by using the L-moment approach and genetically based techniques for the Euphrates-Tigris basin</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hinis, Mehmet Ali ; Yurekli, Kadri ; Erdogan, Muberra</creator><creatorcontrib>Hinis, Mehmet Ali ; Yurekli, Kadri ; Erdogan, Muberra</creatorcontrib><description>Regional intensity-duration-frequency (IDF) relationships for the Euphrates-Tigris basin were established using genetic programming (GP) and multi-gene genetic programming (MGGP). The regional homogeneity of the study area was provided with two sub-regions (SRI and SRII) using the L-moment method. Estimated intensity values for various recurrence periods from selected regional distributions, new IDF relationships were established through GP and MGGP approaches, and the successful results were compared with the results obtained from the distributions. In addition, the parameters of 11 empirical equations commonly used in the literature for rainfall intensities were determined according to particle swarm optimization (PSO), artificial bee colony (ABC), genetic algorithm (GA), and flow direction algorithm (FDA) optimization methods. The rainfall intensity results of both the new IDF equations established with GP and MGGP techniques and the highest-performing empirical equations showed that the closest findings to the data set from regional distributions were obtained with MGGP for SRI and GP for SRII.
Graphical Abstract</description><identifier>ISSN: 0177-798X</identifier><identifier>EISSN: 1434-4483</identifier><identifier>DOI: 10.1007/s00704-023-04695-8</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Algorithms ; Aquatic Pollution ; Atmospheric Protection/Air Quality Control/Air Pollution ; Atmospheric Sciences ; Climate change ; Climatology ; Drought ; Earth and Environmental Science ; Earth Sciences ; Empirical equations ; Genetic algorithms ; Homogeneity ; Hydraulics ; Hydrology ; Mathematical analysis ; Optimization ; Particle swarm optimization ; Precipitation ; Probability distribution ; Rain ; Rainfall ; Rainfall intensity ; Swarm intelligence ; Waste Water Technology ; Water Management ; Water Pollution Control</subject><ispartof>Theoretical and applied climatology, 2024-02, Vol.155 (2), p.1363-1380</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-904943ffb66282c7e6ef558691d65217c0318142015c601a997ecb54adbfa5e93</cites><orcidid>0000-0002-1870-3535 ; 0000-0003-3794-4032 ; 0000-0003-4938-663X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00704-023-04695-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00704-023-04695-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Hinis, Mehmet Ali</creatorcontrib><creatorcontrib>Yurekli, Kadri</creatorcontrib><creatorcontrib>Erdogan, Muberra</creatorcontrib><title>Establishing regional intensity-duration-frequency (IDF) relationships by using the L-moment approach and genetically based techniques for the Euphrates-Tigris basin</title><title>Theoretical and applied climatology</title><addtitle>Theor Appl Climatol</addtitle><description>Regional intensity-duration-frequency (IDF) relationships for the Euphrates-Tigris basin were established using genetic programming (GP) and multi-gene genetic programming (MGGP). The regional homogeneity of the study area was provided with two sub-regions (SRI and SRII) using the L-moment method. Estimated intensity values for various recurrence periods from selected regional distributions, new IDF relationships were established through GP and MGGP approaches, and the successful results were compared with the results obtained from the distributions. In addition, the parameters of 11 empirical equations commonly used in the literature for rainfall intensities were determined according to particle swarm optimization (PSO), artificial bee colony (ABC), genetic algorithm (GA), and flow direction algorithm (FDA) optimization methods. The rainfall intensity results of both the new IDF equations established with GP and MGGP techniques and the highest-performing empirical equations showed that the closest findings to the data set from regional distributions were obtained with MGGP for SRI and GP for SRII.
Graphical Abstract</description><subject>Algorithms</subject><subject>Aquatic Pollution</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Atmospheric Sciences</subject><subject>Climate change</subject><subject>Climatology</subject><subject>Drought</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Empirical equations</subject><subject>Genetic algorithms</subject><subject>Homogeneity</subject><subject>Hydraulics</subject><subject>Hydrology</subject><subject>Mathematical analysis</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>Precipitation</subject><subject>Probability distribution</subject><subject>Rain</subject><subject>Rainfall</subject><subject>Rainfall intensity</subject><subject>Swarm intelligence</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><issn>0177-798X</issn><issn>1434-4483</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u3CAYRVHUSp2mfYGukLJpF6T8GcyySic_0kjdpFJ3FsafbSIPdgEv_EB9zzIzlbLrBiQ49_CJi9AnRm8ZpfprKguVhHJBqFSmIvUV2jEpJJGyFm_QjjKtiTb1r3fofUovlFKulN6hP_uUbTv5NPow4AiDn4OdsA8ZQvJ5I90abS6HpI_we4XgNvz56fv9l8JO54uSXBJuN7ymkyKPgA_kOB8hZGyXJc7WjdiGDg8QIHtnp2nDrU3Q4QxuDL5YE-7neI7u12UsD0Iiz36IPp1IHz6gt72dEnz8t1-jn_f757tHcvjx8HT37UAc1zQTQ6WRou9bpXjNnQYFfVXVyrBOVZxpRwWrmeSUVU5RZo3R4NpK2q7tbQVGXKObi7eMfRorNy_zGsuHpIYbJo0oelEofqFcnFOK0DdL9Ecbt4bR5lRHc6mjKXU05zqauoTEJZQKHAaIr-r_pP4C8WWQtg</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Hinis, Mehmet Ali</creator><creator>Yurekli, Kadri</creator><creator>Erdogan, Muberra</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0002-1870-3535</orcidid><orcidid>https://orcid.org/0000-0003-3794-4032</orcidid><orcidid>https://orcid.org/0000-0003-4938-663X</orcidid></search><sort><creationdate>20240201</creationdate><title>Establishing regional intensity-duration-frequency (IDF) relationships by using the L-moment approach and genetically based techniques for the Euphrates-Tigris basin</title><author>Hinis, Mehmet Ali ; Yurekli, Kadri ; Erdogan, Muberra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-904943ffb66282c7e6ef558691d65217c0318142015c601a997ecb54adbfa5e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Aquatic Pollution</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Atmospheric Sciences</topic><topic>Climate change</topic><topic>Climatology</topic><topic>Drought</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Empirical equations</topic><topic>Genetic algorithms</topic><topic>Homogeneity</topic><topic>Hydraulics</topic><topic>Hydrology</topic><topic>Mathematical analysis</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>Precipitation</topic><topic>Probability distribution</topic><topic>Rain</topic><topic>Rainfall</topic><topic>Rainfall intensity</topic><topic>Swarm intelligence</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hinis, Mehmet Ali</creatorcontrib><creatorcontrib>Yurekli, Kadri</creatorcontrib><creatorcontrib>Erdogan, Muberra</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Theoretical and applied climatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hinis, Mehmet Ali</au><au>Yurekli, Kadri</au><au>Erdogan, Muberra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Establishing regional intensity-duration-frequency (IDF) relationships by using the L-moment approach and genetically based techniques for the Euphrates-Tigris basin</atitle><jtitle>Theoretical and applied climatology</jtitle><stitle>Theor Appl Climatol</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>155</volume><issue>2</issue><spage>1363</spage><epage>1380</epage><pages>1363-1380</pages><issn>0177-798X</issn><eissn>1434-4483</eissn><abstract>Regional intensity-duration-frequency (IDF) relationships for the Euphrates-Tigris basin were established using genetic programming (GP) and multi-gene genetic programming (MGGP). The regional homogeneity of the study area was provided with two sub-regions (SRI and SRII) using the L-moment method. Estimated intensity values for various recurrence periods from selected regional distributions, new IDF relationships were established through GP and MGGP approaches, and the successful results were compared with the results obtained from the distributions. In addition, the parameters of 11 empirical equations commonly used in the literature for rainfall intensities were determined according to particle swarm optimization (PSO), artificial bee colony (ABC), genetic algorithm (GA), and flow direction algorithm (FDA) optimization methods. The rainfall intensity results of both the new IDF equations established with GP and MGGP techniques and the highest-performing empirical equations showed that the closest findings to the data set from regional distributions were obtained with MGGP for SRI and GP for SRII.
Graphical Abstract</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00704-023-04695-8</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-1870-3535</orcidid><orcidid>https://orcid.org/0000-0003-3794-4032</orcidid><orcidid>https://orcid.org/0000-0003-4938-663X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0177-798X |
ispartof | Theoretical and applied climatology, 2024-02, Vol.155 (2), p.1363-1380 |
issn | 0177-798X 1434-4483 |
language | eng |
recordid | cdi_proquest_journals_2914939433 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Aquatic Pollution Atmospheric Protection/Air Quality Control/Air Pollution Atmospheric Sciences Climate change Climatology Drought Earth and Environmental Science Earth Sciences Empirical equations Genetic algorithms Homogeneity Hydraulics Hydrology Mathematical analysis Optimization Particle swarm optimization Precipitation Probability distribution Rain Rainfall Rainfall intensity Swarm intelligence Waste Water Technology Water Management Water Pollution Control |
title | Establishing regional intensity-duration-frequency (IDF) relationships by using the L-moment approach and genetically based techniques for the Euphrates-Tigris basin |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T03%3A43%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Establishing%20regional%20intensity-duration-frequency%20(IDF)%20relationships%20by%20using%20the%20L-moment%20approach%20and%20genetically%20based%20techniques%20for%20the%20Euphrates-Tigris%20basin&rft.jtitle=Theoretical%20and%20applied%20climatology&rft.au=Hinis,%20Mehmet%20Ali&rft.date=2024-02-01&rft.volume=155&rft.issue=2&rft.spage=1363&rft.epage=1380&rft.pages=1363-1380&rft.issn=0177-798X&rft.eissn=1434-4483&rft_id=info:doi/10.1007/s00704-023-04695-8&rft_dat=%3Cproquest_cross%3E2914939433%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2914939433&rft_id=info:pmid/&rfr_iscdi=true |