Establishing regional intensity-duration-frequency (IDF) relationships by using the L-moment approach and genetically based techniques for the Euphrates-Tigris basin

Regional intensity-duration-frequency (IDF) relationships for the Euphrates-Tigris basin were established using genetic programming (GP) and multi-gene genetic programming (MGGP). The regional homogeneity of the study area was provided with two sub-regions (SRI and SRII) using the L-moment method. E...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical and applied climatology 2024-02, Vol.155 (2), p.1363-1380
Hauptverfasser: Hinis, Mehmet Ali, Yurekli, Kadri, Erdogan, Muberra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1380
container_issue 2
container_start_page 1363
container_title Theoretical and applied climatology
container_volume 155
creator Hinis, Mehmet Ali
Yurekli, Kadri
Erdogan, Muberra
description Regional intensity-duration-frequency (IDF) relationships for the Euphrates-Tigris basin were established using genetic programming (GP) and multi-gene genetic programming (MGGP). The regional homogeneity of the study area was provided with two sub-regions (SRI and SRII) using the L-moment method. Estimated intensity values for various recurrence periods from selected regional distributions, new IDF relationships were established through GP and MGGP approaches, and the successful results were compared with the results obtained from the distributions. In addition, the parameters of 11 empirical equations commonly used in the literature for rainfall intensities were determined according to particle swarm optimization (PSO), artificial bee colony (ABC), genetic algorithm (GA), and flow direction algorithm (FDA) optimization methods. The rainfall intensity results of both the new IDF equations established with GP and MGGP techniques and the highest-performing empirical equations showed that the closest findings to the data set from regional distributions were obtained with MGGP for SRI and GP for SRII. Graphical Abstract
doi_str_mv 10.1007/s00704-023-04695-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2914939433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2914939433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-904943ffb66282c7e6ef558691d65217c0318142015c601a997ecb54adbfa5e93</originalsourceid><addsrcrecordid>eNp9kc1u3CAYRVHUSp2mfYGukLJpF6T8GcyySic_0kjdpFJ3FsafbSIPdgEv_EB9zzIzlbLrBiQ49_CJi9AnRm8ZpfprKguVhHJBqFSmIvUV2jEpJJGyFm_QjjKtiTb1r3fofUovlFKulN6hP_uUbTv5NPow4AiDn4OdsA8ZQvJ5I90abS6HpI_we4XgNvz56fv9l8JO54uSXBJuN7ymkyKPgA_kOB8hZGyXJc7WjdiGDg8QIHtnp2nDrU3Q4QxuDL5YE-7neI7u12UsD0Iiz36IPp1IHz6gt72dEnz8t1-jn_f757tHcvjx8HT37UAc1zQTQ6WRou9bpXjNnQYFfVXVyrBOVZxpRwWrmeSUVU5RZo3R4NpK2q7tbQVGXKObi7eMfRorNy_zGsuHpIYbJo0oelEofqFcnFOK0DdL9Ecbt4bR5lRHc6mjKXU05zqauoTEJZQKHAaIr-r_pP4C8WWQtg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2914939433</pqid></control><display><type>article</type><title>Establishing regional intensity-duration-frequency (IDF) relationships by using the L-moment approach and genetically based techniques for the Euphrates-Tigris basin</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hinis, Mehmet Ali ; Yurekli, Kadri ; Erdogan, Muberra</creator><creatorcontrib>Hinis, Mehmet Ali ; Yurekli, Kadri ; Erdogan, Muberra</creatorcontrib><description>Regional intensity-duration-frequency (IDF) relationships for the Euphrates-Tigris basin were established using genetic programming (GP) and multi-gene genetic programming (MGGP). The regional homogeneity of the study area was provided with two sub-regions (SRI and SRII) using the L-moment method. Estimated intensity values for various recurrence periods from selected regional distributions, new IDF relationships were established through GP and MGGP approaches, and the successful results were compared with the results obtained from the distributions. In addition, the parameters of 11 empirical equations commonly used in the literature for rainfall intensities were determined according to particle swarm optimization (PSO), artificial bee colony (ABC), genetic algorithm (GA), and flow direction algorithm (FDA) optimization methods. The rainfall intensity results of both the new IDF equations established with GP and MGGP techniques and the highest-performing empirical equations showed that the closest findings to the data set from regional distributions were obtained with MGGP for SRI and GP for SRII. Graphical Abstract</description><identifier>ISSN: 0177-798X</identifier><identifier>EISSN: 1434-4483</identifier><identifier>DOI: 10.1007/s00704-023-04695-8</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Algorithms ; Aquatic Pollution ; Atmospheric Protection/Air Quality Control/Air Pollution ; Atmospheric Sciences ; Climate change ; Climatology ; Drought ; Earth and Environmental Science ; Earth Sciences ; Empirical equations ; Genetic algorithms ; Homogeneity ; Hydraulics ; Hydrology ; Mathematical analysis ; Optimization ; Particle swarm optimization ; Precipitation ; Probability distribution ; Rain ; Rainfall ; Rainfall intensity ; Swarm intelligence ; Waste Water Technology ; Water Management ; Water Pollution Control</subject><ispartof>Theoretical and applied climatology, 2024-02, Vol.155 (2), p.1363-1380</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-904943ffb66282c7e6ef558691d65217c0318142015c601a997ecb54adbfa5e93</cites><orcidid>0000-0002-1870-3535 ; 0000-0003-3794-4032 ; 0000-0003-4938-663X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00704-023-04695-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00704-023-04695-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Hinis, Mehmet Ali</creatorcontrib><creatorcontrib>Yurekli, Kadri</creatorcontrib><creatorcontrib>Erdogan, Muberra</creatorcontrib><title>Establishing regional intensity-duration-frequency (IDF) relationships by using the L-moment approach and genetically based techniques for the Euphrates-Tigris basin</title><title>Theoretical and applied climatology</title><addtitle>Theor Appl Climatol</addtitle><description>Regional intensity-duration-frequency (IDF) relationships for the Euphrates-Tigris basin were established using genetic programming (GP) and multi-gene genetic programming (MGGP). The regional homogeneity of the study area was provided with two sub-regions (SRI and SRII) using the L-moment method. Estimated intensity values for various recurrence periods from selected regional distributions, new IDF relationships were established through GP and MGGP approaches, and the successful results were compared with the results obtained from the distributions. In addition, the parameters of 11 empirical equations commonly used in the literature for rainfall intensities were determined according to particle swarm optimization (PSO), artificial bee colony (ABC), genetic algorithm (GA), and flow direction algorithm (FDA) optimization methods. The rainfall intensity results of both the new IDF equations established with GP and MGGP techniques and the highest-performing empirical equations showed that the closest findings to the data set from regional distributions were obtained with MGGP for SRI and GP for SRII. Graphical Abstract</description><subject>Algorithms</subject><subject>Aquatic Pollution</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Atmospheric Sciences</subject><subject>Climate change</subject><subject>Climatology</subject><subject>Drought</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Empirical equations</subject><subject>Genetic algorithms</subject><subject>Homogeneity</subject><subject>Hydraulics</subject><subject>Hydrology</subject><subject>Mathematical analysis</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>Precipitation</subject><subject>Probability distribution</subject><subject>Rain</subject><subject>Rainfall</subject><subject>Rainfall intensity</subject><subject>Swarm intelligence</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><issn>0177-798X</issn><issn>1434-4483</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u3CAYRVHUSp2mfYGukLJpF6T8GcyySic_0kjdpFJ3FsafbSIPdgEv_EB9zzIzlbLrBiQ49_CJi9AnRm8ZpfprKguVhHJBqFSmIvUV2jEpJJGyFm_QjjKtiTb1r3fofUovlFKulN6hP_uUbTv5NPow4AiDn4OdsA8ZQvJ5I90abS6HpI_we4XgNvz56fv9l8JO54uSXBJuN7ymkyKPgA_kOB8hZGyXJc7WjdiGDg8QIHtnp2nDrU3Q4QxuDL5YE-7neI7u12UsD0Iiz36IPp1IHz6gt72dEnz8t1-jn_f757tHcvjx8HT37UAc1zQTQ6WRou9bpXjNnQYFfVXVyrBOVZxpRwWrmeSUVU5RZo3R4NpK2q7tbQVGXKObi7eMfRorNy_zGsuHpIYbJo0oelEofqFcnFOK0DdL9Ecbt4bR5lRHc6mjKXU05zqauoTEJZQKHAaIr-r_pP4C8WWQtg</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Hinis, Mehmet Ali</creator><creator>Yurekli, Kadri</creator><creator>Erdogan, Muberra</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0002-1870-3535</orcidid><orcidid>https://orcid.org/0000-0003-3794-4032</orcidid><orcidid>https://orcid.org/0000-0003-4938-663X</orcidid></search><sort><creationdate>20240201</creationdate><title>Establishing regional intensity-duration-frequency (IDF) relationships by using the L-moment approach and genetically based techniques for the Euphrates-Tigris basin</title><author>Hinis, Mehmet Ali ; Yurekli, Kadri ; Erdogan, Muberra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-904943ffb66282c7e6ef558691d65217c0318142015c601a997ecb54adbfa5e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Aquatic Pollution</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Atmospheric Sciences</topic><topic>Climate change</topic><topic>Climatology</topic><topic>Drought</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Empirical equations</topic><topic>Genetic algorithms</topic><topic>Homogeneity</topic><topic>Hydraulics</topic><topic>Hydrology</topic><topic>Mathematical analysis</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>Precipitation</topic><topic>Probability distribution</topic><topic>Rain</topic><topic>Rainfall</topic><topic>Rainfall intensity</topic><topic>Swarm intelligence</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hinis, Mehmet Ali</creatorcontrib><creatorcontrib>Yurekli, Kadri</creatorcontrib><creatorcontrib>Erdogan, Muberra</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Theoretical and applied climatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hinis, Mehmet Ali</au><au>Yurekli, Kadri</au><au>Erdogan, Muberra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Establishing regional intensity-duration-frequency (IDF) relationships by using the L-moment approach and genetically based techniques for the Euphrates-Tigris basin</atitle><jtitle>Theoretical and applied climatology</jtitle><stitle>Theor Appl Climatol</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>155</volume><issue>2</issue><spage>1363</spage><epage>1380</epage><pages>1363-1380</pages><issn>0177-798X</issn><eissn>1434-4483</eissn><abstract>Regional intensity-duration-frequency (IDF) relationships for the Euphrates-Tigris basin were established using genetic programming (GP) and multi-gene genetic programming (MGGP). The regional homogeneity of the study area was provided with two sub-regions (SRI and SRII) using the L-moment method. Estimated intensity values for various recurrence periods from selected regional distributions, new IDF relationships were established through GP and MGGP approaches, and the successful results were compared with the results obtained from the distributions. In addition, the parameters of 11 empirical equations commonly used in the literature for rainfall intensities were determined according to particle swarm optimization (PSO), artificial bee colony (ABC), genetic algorithm (GA), and flow direction algorithm (FDA) optimization methods. The rainfall intensity results of both the new IDF equations established with GP and MGGP techniques and the highest-performing empirical equations showed that the closest findings to the data set from regional distributions were obtained with MGGP for SRI and GP for SRII. Graphical Abstract</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00704-023-04695-8</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-1870-3535</orcidid><orcidid>https://orcid.org/0000-0003-3794-4032</orcidid><orcidid>https://orcid.org/0000-0003-4938-663X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0177-798X
ispartof Theoretical and applied climatology, 2024-02, Vol.155 (2), p.1363-1380
issn 0177-798X
1434-4483
language eng
recordid cdi_proquest_journals_2914939433
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Aquatic Pollution
Atmospheric Protection/Air Quality Control/Air Pollution
Atmospheric Sciences
Climate change
Climatology
Drought
Earth and Environmental Science
Earth Sciences
Empirical equations
Genetic algorithms
Homogeneity
Hydraulics
Hydrology
Mathematical analysis
Optimization
Particle swarm optimization
Precipitation
Probability distribution
Rain
Rainfall
Rainfall intensity
Swarm intelligence
Waste Water Technology
Water Management
Water Pollution Control
title Establishing regional intensity-duration-frequency (IDF) relationships by using the L-moment approach and genetically based techniques for the Euphrates-Tigris basin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T03%3A43%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Establishing%20regional%20intensity-duration-frequency%20(IDF)%20relationships%20by%20using%20the%20L-moment%20approach%20and%20genetically%20based%20techniques%20for%20the%20Euphrates-Tigris%20basin&rft.jtitle=Theoretical%20and%20applied%20climatology&rft.au=Hinis,%20Mehmet%20Ali&rft.date=2024-02-01&rft.volume=155&rft.issue=2&rft.spage=1363&rft.epage=1380&rft.pages=1363-1380&rft.issn=0177-798X&rft.eissn=1434-4483&rft_id=info:doi/10.1007/s00704-023-04695-8&rft_dat=%3Cproquest_cross%3E2914939433%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2914939433&rft_id=info:pmid/&rfr_iscdi=true