Hybrid interpolation approach for estimating the spatial variation of annual precipitation in the Macta basin, Algeria

Spatial precipitation analysis is essential for effectively managing hydrological modeling, construction of water structures, and irrigation planning. In this study, the ordinary kriging (OK), simple kriging (SK), global polynomial interpolation (GPI), local polynomial interpolation (LPI), inverse d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical and applied climatology 2024-02, Vol.155 (2), p.1139-1166
Hauptverfasser: Achite, Mohammed, Katipoğlu, Okan Mert, Javari, Majid, Caloiero, Tommaso
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1166
container_issue 2
container_start_page 1139
container_title Theoretical and applied climatology
container_volume 155
creator Achite, Mohammed
Katipoğlu, Okan Mert
Javari, Majid
Caloiero, Tommaso
description Spatial precipitation analysis is essential for effectively managing hydrological modeling, construction of water structures, and irrigation planning. In this study, the ordinary kriging (OK), simple kriging (SK), global polynomial interpolation (GPI), local polynomial interpolation (LPI), inverse distance weighted (IDW), radial basis functions (RBF), and artificial neural network (ANN)-based hybrid techniques were compared to determine the spatial variation of annual precipitation. Statistical indicators derived from Willmott’s index of agreement, root mean square error, mean absolute percentage error, and the violin plot and boxplot graphical approaches were used to determine the most effective technique for precipitation interpolation. According to the analysis results, it has been observed that the ANN model significantly improves the prediction performance of single interpolation methods. The OK-ANN hybrid model was determined to be the most accurate representation of precipitation distribution, with the GPI-ANN model coming in second. The most precise results were obtained using the deterministic method, RBF with inverse multiquadric kernel function, LPI with Epanechnikov kernel function, and GPI with 3rd-order polynomial interpolations. In addition, it was determined that deterministic approaches produce more successful results than geostatistical approaches in the basin due to the presence of homogeneous and densely distributed meteorological observation networks.
doi_str_mv 10.1007/s00704-023-04685-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2914939327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153590043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-39fddbcb39bad870ca47b9b2f509c7a8f1c34fddc5cbc9e0a9796acc9d615d243</originalsourceid><addsrcrecordid>eNp9kcFLwzAUxoMoOKf_gKeAFw9WkyZtmuMY6oSJFwVvIUnTLaNLatI69t8bV0Hw4OXl8fH7HnnvA-ASo1uMELuLqSCaoZxkiJZVke2OwARTQjNKK3IMJggzljFevZ-Csxg3CKG8LNkEfC72KtgaWteb0PlW9tY7KLsueKnXsPEBmtjbbdLdCvZrA2OXetnCTxnsSPsGSueGpHXBaNvZftStOxiepe4lVDJadwNn7cok3zk4aWQbzcXPOwVvD_ev80W2fHl8ms-WmSZF3meEN3WttCJcybpiSEvKFFd5UyCumawarAlNiC600twgyRkvpda8LnFR55RMwfU4N-3zMaRNxNZGbdpWOuOHKAguSMERoiShV3_QjR-CS78TOceUE05ylqh8pHTwMQbTiC6k64S9wEh8RyHGKESKQhyiELtkIqMpJtilA_yO_sf1BRURj5U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2914939327</pqid></control><display><type>article</type><title>Hybrid interpolation approach for estimating the spatial variation of annual precipitation in the Macta basin, Algeria</title><source>Springer Nature - Complete Springer Journals</source><creator>Achite, Mohammed ; Katipoğlu, Okan Mert ; Javari, Majid ; Caloiero, Tommaso</creator><creatorcontrib>Achite, Mohammed ; Katipoğlu, Okan Mert ; Javari, Majid ; Caloiero, Tommaso</creatorcontrib><description>Spatial precipitation analysis is essential for effectively managing hydrological modeling, construction of water structures, and irrigation planning. In this study, the ordinary kriging (OK), simple kriging (SK), global polynomial interpolation (GPI), local polynomial interpolation (LPI), inverse distance weighted (IDW), radial basis functions (RBF), and artificial neural network (ANN)-based hybrid techniques were compared to determine the spatial variation of annual precipitation. Statistical indicators derived from Willmott’s index of agreement, root mean square error, mean absolute percentage error, and the violin plot and boxplot graphical approaches were used to determine the most effective technique for precipitation interpolation. According to the analysis results, it has been observed that the ANN model significantly improves the prediction performance of single interpolation methods. The OK-ANN hybrid model was determined to be the most accurate representation of precipitation distribution, with the GPI-ANN model coming in second. The most precise results were obtained using the deterministic method, RBF with inverse multiquadric kernel function, LPI with Epanechnikov kernel function, and GPI with 3rd-order polynomial interpolations. In addition, it was determined that deterministic approaches produce more successful results than geostatistical approaches in the basin due to the presence of homogeneous and densely distributed meteorological observation networks.</description><identifier>ISSN: 0177-798X</identifier><identifier>EISSN: 1434-4483</identifier><identifier>DOI: 10.1007/s00704-023-04685-w</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Algeria ; Annual precipitation ; Aquatic Pollution ; Artificial neural networks ; atmospheric precipitation ; Atmospheric Protection/Air Quality Control/Air Pollution ; Atmospheric Sciences ; basins ; Climatology ; Earth and Environmental Science ; Earth Sciences ; geostatistics ; Hydrologic models ; hydrology ; Interpolation ; Interpolation methods ; irrigation ; Irrigation water ; Kernel functions ; kriging ; Meteorological observations ; Modelling ; Neural networks ; Polynomials ; Precipitation ; Precipitation distribution ; prediction ; Radial basis function ; Spatial analysis ; Spatial variations ; Waste Water Technology ; Water Management ; Water Pollution Control</subject><ispartof>Theoretical and applied climatology, 2024-02, Vol.155 (2), p.1139-1166</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-39fddbcb39bad870ca47b9b2f509c7a8f1c34fddc5cbc9e0a9796acc9d615d243</citedby><cites>FETCH-LOGICAL-c352t-39fddbcb39bad870ca47b9b2f509c7a8f1c34fddc5cbc9e0a9796acc9d615d243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00704-023-04685-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00704-023-04685-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Achite, Mohammed</creatorcontrib><creatorcontrib>Katipoğlu, Okan Mert</creatorcontrib><creatorcontrib>Javari, Majid</creatorcontrib><creatorcontrib>Caloiero, Tommaso</creatorcontrib><title>Hybrid interpolation approach for estimating the spatial variation of annual precipitation in the Macta basin, Algeria</title><title>Theoretical and applied climatology</title><addtitle>Theor Appl Climatol</addtitle><description>Spatial precipitation analysis is essential for effectively managing hydrological modeling, construction of water structures, and irrigation planning. In this study, the ordinary kriging (OK), simple kriging (SK), global polynomial interpolation (GPI), local polynomial interpolation (LPI), inverse distance weighted (IDW), radial basis functions (RBF), and artificial neural network (ANN)-based hybrid techniques were compared to determine the spatial variation of annual precipitation. Statistical indicators derived from Willmott’s index of agreement, root mean square error, mean absolute percentage error, and the violin plot and boxplot graphical approaches were used to determine the most effective technique for precipitation interpolation. According to the analysis results, it has been observed that the ANN model significantly improves the prediction performance of single interpolation methods. The OK-ANN hybrid model was determined to be the most accurate representation of precipitation distribution, with the GPI-ANN model coming in second. The most precise results were obtained using the deterministic method, RBF with inverse multiquadric kernel function, LPI with Epanechnikov kernel function, and GPI with 3rd-order polynomial interpolations. In addition, it was determined that deterministic approaches produce more successful results than geostatistical approaches in the basin due to the presence of homogeneous and densely distributed meteorological observation networks.</description><subject>Algeria</subject><subject>Annual precipitation</subject><subject>Aquatic Pollution</subject><subject>Artificial neural networks</subject><subject>atmospheric precipitation</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Atmospheric Sciences</subject><subject>basins</subject><subject>Climatology</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>geostatistics</subject><subject>Hydrologic models</subject><subject>hydrology</subject><subject>Interpolation</subject><subject>Interpolation methods</subject><subject>irrigation</subject><subject>Irrigation water</subject><subject>Kernel functions</subject><subject>kriging</subject><subject>Meteorological observations</subject><subject>Modelling</subject><subject>Neural networks</subject><subject>Polynomials</subject><subject>Precipitation</subject><subject>Precipitation distribution</subject><subject>prediction</subject><subject>Radial basis function</subject><subject>Spatial analysis</subject><subject>Spatial variations</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><issn>0177-798X</issn><issn>1434-4483</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kcFLwzAUxoMoOKf_gKeAFw9WkyZtmuMY6oSJFwVvIUnTLaNLatI69t8bV0Hw4OXl8fH7HnnvA-ASo1uMELuLqSCaoZxkiJZVke2OwARTQjNKK3IMJggzljFevZ-Csxg3CKG8LNkEfC72KtgaWteb0PlW9tY7KLsueKnXsPEBmtjbbdLdCvZrA2OXetnCTxnsSPsGSueGpHXBaNvZftStOxiepe4lVDJadwNn7cok3zk4aWQbzcXPOwVvD_ev80W2fHl8ms-WmSZF3meEN3WttCJcybpiSEvKFFd5UyCumawarAlNiC600twgyRkvpda8LnFR55RMwfU4N-3zMaRNxNZGbdpWOuOHKAguSMERoiShV3_QjR-CS78TOceUE05ylqh8pHTwMQbTiC6k64S9wEh8RyHGKESKQhyiELtkIqMpJtilA_yO_sf1BRURj5U</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Achite, Mohammed</creator><creator>Katipoğlu, Okan Mert</creator><creator>Javari, Majid</creator><creator>Caloiero, Tommaso</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20240201</creationdate><title>Hybrid interpolation approach for estimating the spatial variation of annual precipitation in the Macta basin, Algeria</title><author>Achite, Mohammed ; Katipoğlu, Okan Mert ; Javari, Majid ; Caloiero, Tommaso</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-39fddbcb39bad870ca47b9b2f509c7a8f1c34fddc5cbc9e0a9796acc9d615d243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algeria</topic><topic>Annual precipitation</topic><topic>Aquatic Pollution</topic><topic>Artificial neural networks</topic><topic>atmospheric precipitation</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Atmospheric Sciences</topic><topic>basins</topic><topic>Climatology</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>geostatistics</topic><topic>Hydrologic models</topic><topic>hydrology</topic><topic>Interpolation</topic><topic>Interpolation methods</topic><topic>irrigation</topic><topic>Irrigation water</topic><topic>Kernel functions</topic><topic>kriging</topic><topic>Meteorological observations</topic><topic>Modelling</topic><topic>Neural networks</topic><topic>Polynomials</topic><topic>Precipitation</topic><topic>Precipitation distribution</topic><topic>prediction</topic><topic>Radial basis function</topic><topic>Spatial analysis</topic><topic>Spatial variations</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Achite, Mohammed</creatorcontrib><creatorcontrib>Katipoğlu, Okan Mert</creatorcontrib><creatorcontrib>Javari, Majid</creatorcontrib><creatorcontrib>Caloiero, Tommaso</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Theoretical and applied climatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Achite, Mohammed</au><au>Katipoğlu, Okan Mert</au><au>Javari, Majid</au><au>Caloiero, Tommaso</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid interpolation approach for estimating the spatial variation of annual precipitation in the Macta basin, Algeria</atitle><jtitle>Theoretical and applied climatology</jtitle><stitle>Theor Appl Climatol</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>155</volume><issue>2</issue><spage>1139</spage><epage>1166</epage><pages>1139-1166</pages><issn>0177-798X</issn><eissn>1434-4483</eissn><abstract>Spatial precipitation analysis is essential for effectively managing hydrological modeling, construction of water structures, and irrigation planning. In this study, the ordinary kriging (OK), simple kriging (SK), global polynomial interpolation (GPI), local polynomial interpolation (LPI), inverse distance weighted (IDW), radial basis functions (RBF), and artificial neural network (ANN)-based hybrid techniques were compared to determine the spatial variation of annual precipitation. Statistical indicators derived from Willmott’s index of agreement, root mean square error, mean absolute percentage error, and the violin plot and boxplot graphical approaches were used to determine the most effective technique for precipitation interpolation. According to the analysis results, it has been observed that the ANN model significantly improves the prediction performance of single interpolation methods. The OK-ANN hybrid model was determined to be the most accurate representation of precipitation distribution, with the GPI-ANN model coming in second. The most precise results were obtained using the deterministic method, RBF with inverse multiquadric kernel function, LPI with Epanechnikov kernel function, and GPI with 3rd-order polynomial interpolations. In addition, it was determined that deterministic approaches produce more successful results than geostatistical approaches in the basin due to the presence of homogeneous and densely distributed meteorological observation networks.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00704-023-04685-w</doi><tpages>28</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0177-798X
ispartof Theoretical and applied climatology, 2024-02, Vol.155 (2), p.1139-1166
issn 0177-798X
1434-4483
language eng
recordid cdi_proquest_journals_2914939327
source Springer Nature - Complete Springer Journals
subjects Algeria
Annual precipitation
Aquatic Pollution
Artificial neural networks
atmospheric precipitation
Atmospheric Protection/Air Quality Control/Air Pollution
Atmospheric Sciences
basins
Climatology
Earth and Environmental Science
Earth Sciences
geostatistics
Hydrologic models
hydrology
Interpolation
Interpolation methods
irrigation
Irrigation water
Kernel functions
kriging
Meteorological observations
Modelling
Neural networks
Polynomials
Precipitation
Precipitation distribution
prediction
Radial basis function
Spatial analysis
Spatial variations
Waste Water Technology
Water Management
Water Pollution Control
title Hybrid interpolation approach for estimating the spatial variation of annual precipitation in the Macta basin, Algeria
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T15%3A01%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20interpolation%20approach%20for%20estimating%20the%20spatial%20variation%20of%20annual%20precipitation%20in%20the%20Macta%20basin,%20Algeria&rft.jtitle=Theoretical%20and%20applied%20climatology&rft.au=Achite,%20Mohammed&rft.date=2024-02-01&rft.volume=155&rft.issue=2&rft.spage=1139&rft.epage=1166&rft.pages=1139-1166&rft.issn=0177-798X&rft.eissn=1434-4483&rft_id=info:doi/10.1007/s00704-023-04685-w&rft_dat=%3Cproquest_cross%3E3153590043%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2914939327&rft_id=info:pmid/&rfr_iscdi=true