Hybrid interpolation approach for estimating the spatial variation of annual precipitation in the Macta basin, Algeria
Spatial precipitation analysis is essential for effectively managing hydrological modeling, construction of water structures, and irrigation planning. In this study, the ordinary kriging (OK), simple kriging (SK), global polynomial interpolation (GPI), local polynomial interpolation (LPI), inverse d...
Gespeichert in:
Veröffentlicht in: | Theoretical and applied climatology 2024-02, Vol.155 (2), p.1139-1166 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1166 |
---|---|
container_issue | 2 |
container_start_page | 1139 |
container_title | Theoretical and applied climatology |
container_volume | 155 |
creator | Achite, Mohammed Katipoğlu, Okan Mert Javari, Majid Caloiero, Tommaso |
description | Spatial precipitation analysis is essential for effectively managing hydrological modeling, construction of water structures, and irrigation planning. In this study, the ordinary kriging (OK), simple kriging (SK), global polynomial interpolation (GPI), local polynomial interpolation (LPI), inverse distance weighted (IDW), radial basis functions (RBF), and artificial neural network (ANN)-based hybrid techniques were compared to determine the spatial variation of annual precipitation. Statistical indicators derived from Willmott’s index of agreement, root mean square error, mean absolute percentage error, and the violin plot and boxplot graphical approaches were used to determine the most effective technique for precipitation interpolation. According to the analysis results, it has been observed that the ANN model significantly improves the prediction performance of single interpolation methods. The OK-ANN hybrid model was determined to be the most accurate representation of precipitation distribution, with the GPI-ANN model coming in second. The most precise results were obtained using the deterministic method, RBF with inverse multiquadric kernel function, LPI with Epanechnikov kernel function, and GPI with 3rd-order polynomial interpolations. In addition, it was determined that deterministic approaches produce more successful results than geostatistical approaches in the basin due to the presence of homogeneous and densely distributed meteorological observation networks. |
doi_str_mv | 10.1007/s00704-023-04685-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2914939327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153590043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-39fddbcb39bad870ca47b9b2f509c7a8f1c34fddc5cbc9e0a9796acc9d615d243</originalsourceid><addsrcrecordid>eNp9kcFLwzAUxoMoOKf_gKeAFw9WkyZtmuMY6oSJFwVvIUnTLaNLatI69t8bV0Hw4OXl8fH7HnnvA-ASo1uMELuLqSCaoZxkiJZVke2OwARTQjNKK3IMJggzljFevZ-Csxg3CKG8LNkEfC72KtgaWteb0PlW9tY7KLsueKnXsPEBmtjbbdLdCvZrA2OXetnCTxnsSPsGSueGpHXBaNvZftStOxiepe4lVDJadwNn7cok3zk4aWQbzcXPOwVvD_ev80W2fHl8ms-WmSZF3meEN3WttCJcybpiSEvKFFd5UyCumawarAlNiC600twgyRkvpda8LnFR55RMwfU4N-3zMaRNxNZGbdpWOuOHKAguSMERoiShV3_QjR-CS78TOceUE05ylqh8pHTwMQbTiC6k64S9wEh8RyHGKESKQhyiELtkIqMpJtilA_yO_sf1BRURj5U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2914939327</pqid></control><display><type>article</type><title>Hybrid interpolation approach for estimating the spatial variation of annual precipitation in the Macta basin, Algeria</title><source>Springer Nature - Complete Springer Journals</source><creator>Achite, Mohammed ; Katipoğlu, Okan Mert ; Javari, Majid ; Caloiero, Tommaso</creator><creatorcontrib>Achite, Mohammed ; Katipoğlu, Okan Mert ; Javari, Majid ; Caloiero, Tommaso</creatorcontrib><description>Spatial precipitation analysis is essential for effectively managing hydrological modeling, construction of water structures, and irrigation planning. In this study, the ordinary kriging (OK), simple kriging (SK), global polynomial interpolation (GPI), local polynomial interpolation (LPI), inverse distance weighted (IDW), radial basis functions (RBF), and artificial neural network (ANN)-based hybrid techniques were compared to determine the spatial variation of annual precipitation. Statistical indicators derived from Willmott’s index of agreement, root mean square error, mean absolute percentage error, and the violin plot and boxplot graphical approaches were used to determine the most effective technique for precipitation interpolation. According to the analysis results, it has been observed that the ANN model significantly improves the prediction performance of single interpolation methods. The OK-ANN hybrid model was determined to be the most accurate representation of precipitation distribution, with the GPI-ANN model coming in second. The most precise results were obtained using the deterministic method, RBF with inverse multiquadric kernel function, LPI with Epanechnikov kernel function, and GPI with 3rd-order polynomial interpolations. In addition, it was determined that deterministic approaches produce more successful results than geostatistical approaches in the basin due to the presence of homogeneous and densely distributed meteorological observation networks.</description><identifier>ISSN: 0177-798X</identifier><identifier>EISSN: 1434-4483</identifier><identifier>DOI: 10.1007/s00704-023-04685-w</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Algeria ; Annual precipitation ; Aquatic Pollution ; Artificial neural networks ; atmospheric precipitation ; Atmospheric Protection/Air Quality Control/Air Pollution ; Atmospheric Sciences ; basins ; Climatology ; Earth and Environmental Science ; Earth Sciences ; geostatistics ; Hydrologic models ; hydrology ; Interpolation ; Interpolation methods ; irrigation ; Irrigation water ; Kernel functions ; kriging ; Meteorological observations ; Modelling ; Neural networks ; Polynomials ; Precipitation ; Precipitation distribution ; prediction ; Radial basis function ; Spatial analysis ; Spatial variations ; Waste Water Technology ; Water Management ; Water Pollution Control</subject><ispartof>Theoretical and applied climatology, 2024-02, Vol.155 (2), p.1139-1166</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-39fddbcb39bad870ca47b9b2f509c7a8f1c34fddc5cbc9e0a9796acc9d615d243</citedby><cites>FETCH-LOGICAL-c352t-39fddbcb39bad870ca47b9b2f509c7a8f1c34fddc5cbc9e0a9796acc9d615d243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00704-023-04685-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00704-023-04685-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Achite, Mohammed</creatorcontrib><creatorcontrib>Katipoğlu, Okan Mert</creatorcontrib><creatorcontrib>Javari, Majid</creatorcontrib><creatorcontrib>Caloiero, Tommaso</creatorcontrib><title>Hybrid interpolation approach for estimating the spatial variation of annual precipitation in the Macta basin, Algeria</title><title>Theoretical and applied climatology</title><addtitle>Theor Appl Climatol</addtitle><description>Spatial precipitation analysis is essential for effectively managing hydrological modeling, construction of water structures, and irrigation planning. In this study, the ordinary kriging (OK), simple kriging (SK), global polynomial interpolation (GPI), local polynomial interpolation (LPI), inverse distance weighted (IDW), radial basis functions (RBF), and artificial neural network (ANN)-based hybrid techniques were compared to determine the spatial variation of annual precipitation. Statistical indicators derived from Willmott’s index of agreement, root mean square error, mean absolute percentage error, and the violin plot and boxplot graphical approaches were used to determine the most effective technique for precipitation interpolation. According to the analysis results, it has been observed that the ANN model significantly improves the prediction performance of single interpolation methods. The OK-ANN hybrid model was determined to be the most accurate representation of precipitation distribution, with the GPI-ANN model coming in second. The most precise results were obtained using the deterministic method, RBF with inverse multiquadric kernel function, LPI with Epanechnikov kernel function, and GPI with 3rd-order polynomial interpolations. In addition, it was determined that deterministic approaches produce more successful results than geostatistical approaches in the basin due to the presence of homogeneous and densely distributed meteorological observation networks.</description><subject>Algeria</subject><subject>Annual precipitation</subject><subject>Aquatic Pollution</subject><subject>Artificial neural networks</subject><subject>atmospheric precipitation</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Atmospheric Sciences</subject><subject>basins</subject><subject>Climatology</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>geostatistics</subject><subject>Hydrologic models</subject><subject>hydrology</subject><subject>Interpolation</subject><subject>Interpolation methods</subject><subject>irrigation</subject><subject>Irrigation water</subject><subject>Kernel functions</subject><subject>kriging</subject><subject>Meteorological observations</subject><subject>Modelling</subject><subject>Neural networks</subject><subject>Polynomials</subject><subject>Precipitation</subject><subject>Precipitation distribution</subject><subject>prediction</subject><subject>Radial basis function</subject><subject>Spatial analysis</subject><subject>Spatial variations</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><issn>0177-798X</issn><issn>1434-4483</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kcFLwzAUxoMoOKf_gKeAFw9WkyZtmuMY6oSJFwVvIUnTLaNLatI69t8bV0Hw4OXl8fH7HnnvA-ASo1uMELuLqSCaoZxkiJZVke2OwARTQjNKK3IMJggzljFevZ-Csxg3CKG8LNkEfC72KtgaWteb0PlW9tY7KLsueKnXsPEBmtjbbdLdCvZrA2OXetnCTxnsSPsGSueGpHXBaNvZftStOxiepe4lVDJadwNn7cok3zk4aWQbzcXPOwVvD_ev80W2fHl8ms-WmSZF3meEN3WttCJcybpiSEvKFFd5UyCumawarAlNiC600twgyRkvpda8LnFR55RMwfU4N-3zMaRNxNZGbdpWOuOHKAguSMERoiShV3_QjR-CS78TOceUE05ylqh8pHTwMQbTiC6k64S9wEh8RyHGKESKQhyiELtkIqMpJtilA_yO_sf1BRURj5U</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Achite, Mohammed</creator><creator>Katipoğlu, Okan Mert</creator><creator>Javari, Majid</creator><creator>Caloiero, Tommaso</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20240201</creationdate><title>Hybrid interpolation approach for estimating the spatial variation of annual precipitation in the Macta basin, Algeria</title><author>Achite, Mohammed ; Katipoğlu, Okan Mert ; Javari, Majid ; Caloiero, Tommaso</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-39fddbcb39bad870ca47b9b2f509c7a8f1c34fddc5cbc9e0a9796acc9d615d243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algeria</topic><topic>Annual precipitation</topic><topic>Aquatic Pollution</topic><topic>Artificial neural networks</topic><topic>atmospheric precipitation</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Atmospheric Sciences</topic><topic>basins</topic><topic>Climatology</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>geostatistics</topic><topic>Hydrologic models</topic><topic>hydrology</topic><topic>Interpolation</topic><topic>Interpolation methods</topic><topic>irrigation</topic><topic>Irrigation water</topic><topic>Kernel functions</topic><topic>kriging</topic><topic>Meteorological observations</topic><topic>Modelling</topic><topic>Neural networks</topic><topic>Polynomials</topic><topic>Precipitation</topic><topic>Precipitation distribution</topic><topic>prediction</topic><topic>Radial basis function</topic><topic>Spatial analysis</topic><topic>Spatial variations</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Achite, Mohammed</creatorcontrib><creatorcontrib>Katipoğlu, Okan Mert</creatorcontrib><creatorcontrib>Javari, Majid</creatorcontrib><creatorcontrib>Caloiero, Tommaso</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Theoretical and applied climatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Achite, Mohammed</au><au>Katipoğlu, Okan Mert</au><au>Javari, Majid</au><au>Caloiero, Tommaso</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid interpolation approach for estimating the spatial variation of annual precipitation in the Macta basin, Algeria</atitle><jtitle>Theoretical and applied climatology</jtitle><stitle>Theor Appl Climatol</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>155</volume><issue>2</issue><spage>1139</spage><epage>1166</epage><pages>1139-1166</pages><issn>0177-798X</issn><eissn>1434-4483</eissn><abstract>Spatial precipitation analysis is essential for effectively managing hydrological modeling, construction of water structures, and irrigation planning. In this study, the ordinary kriging (OK), simple kriging (SK), global polynomial interpolation (GPI), local polynomial interpolation (LPI), inverse distance weighted (IDW), radial basis functions (RBF), and artificial neural network (ANN)-based hybrid techniques were compared to determine the spatial variation of annual precipitation. Statistical indicators derived from Willmott’s index of agreement, root mean square error, mean absolute percentage error, and the violin plot and boxplot graphical approaches were used to determine the most effective technique for precipitation interpolation. According to the analysis results, it has been observed that the ANN model significantly improves the prediction performance of single interpolation methods. The OK-ANN hybrid model was determined to be the most accurate representation of precipitation distribution, with the GPI-ANN model coming in second. The most precise results were obtained using the deterministic method, RBF with inverse multiquadric kernel function, LPI with Epanechnikov kernel function, and GPI with 3rd-order polynomial interpolations. In addition, it was determined that deterministic approaches produce more successful results than geostatistical approaches in the basin due to the presence of homogeneous and densely distributed meteorological observation networks.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00704-023-04685-w</doi><tpages>28</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0177-798X |
ispartof | Theoretical and applied climatology, 2024-02, Vol.155 (2), p.1139-1166 |
issn | 0177-798X 1434-4483 |
language | eng |
recordid | cdi_proquest_journals_2914939327 |
source | Springer Nature - Complete Springer Journals |
subjects | Algeria Annual precipitation Aquatic Pollution Artificial neural networks atmospheric precipitation Atmospheric Protection/Air Quality Control/Air Pollution Atmospheric Sciences basins Climatology Earth and Environmental Science Earth Sciences geostatistics Hydrologic models hydrology Interpolation Interpolation methods irrigation Irrigation water Kernel functions kriging Meteorological observations Modelling Neural networks Polynomials Precipitation Precipitation distribution prediction Radial basis function Spatial analysis Spatial variations Waste Water Technology Water Management Water Pollution Control |
title | Hybrid interpolation approach for estimating the spatial variation of annual precipitation in the Macta basin, Algeria |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T15%3A01%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20interpolation%20approach%20for%20estimating%20the%20spatial%20variation%20of%20annual%20precipitation%20in%20the%20Macta%20basin,%20Algeria&rft.jtitle=Theoretical%20and%20applied%20climatology&rft.au=Achite,%20Mohammed&rft.date=2024-02-01&rft.volume=155&rft.issue=2&rft.spage=1139&rft.epage=1166&rft.pages=1139-1166&rft.issn=0177-798X&rft.eissn=1434-4483&rft_id=info:doi/10.1007/s00704-023-04685-w&rft_dat=%3Cproquest_cross%3E3153590043%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2914939327&rft_id=info:pmid/&rfr_iscdi=true |