Underwater Adhesives Produced by Chemically Induced Protein Aggregation

Barnacles convert hydrophilic proteins into an insoluble, yet aqueous, material that functions as a permanent underwater adhesive. Here, it is demonstrated that a common hydrophilic protein, bovine serum albumin, can be chemically triggered underwater to aggregate into a similar aqueous adhesive tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2024-01, Vol.34 (3)
Hauptverfasser: Wilson, Michael C., Lu, Qin, Nachtrieb, Kaitlin R., Fuller, Jackson S., Skogg, Chloe M., Yates, Elizabeth A., Thum, Matthew D., So, Christopher R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Barnacles convert hydrophilic proteins into an insoluble, yet aqueous, material that functions as a permanent underwater adhesive. Here, it is demonstrated that a common hydrophilic protein, bovine serum albumin, can be chemically triggered underwater to aggregate into a similar aqueous adhesive that mimics the formation of the natural adhesive. The combined action of multiple chemical denaturants initiates rapid gelation followed by further curing over time in artificial seawater. The adhesive strengths of this waterborne adhesive measured by lap shear are comparable to many bioinspired adhesives that use organic solvents and a high fraction of hydrophobic components. This approach establishes a bioinspired adhesive that can be deployed at practical scales in marine environments, produced sustainably, and sourced from low‐cost materials.
ISSN:1616-301X
1616-3028
DOI:10.1002/adfm.202308790