Impact of Molecular Weight on the Ionic and Electronic Transport of Self‐Doped Conjugated Polyelectrolytes Relevant to Organic Electrochemical Transistors

Organic electrochemical transistors (OECTs) have gained considerable attention due to their potential applications in emerging biosensor platforms. The use of conjugated polyelectrolytes (CPEs) as active materials in OECTs is particularly advantageous owing to their functional, water‐processable, an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2024-01, Vol.34 (3)
Hauptverfasser: Chae, Sangmin, Nguyen‐Dang, Tung, Chatsirisupachai, Jirat, Yi, Ahra, Vázquez, Ricardo Javier, Quek, Glenn, Promarak, Vinich, Kim, Hyo Jung, Bazan, Guillermo C., Nguyen, Thuc‐Quyen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Advanced functional materials
container_volume 34
creator Chae, Sangmin
Nguyen‐Dang, Tung
Chatsirisupachai, Jirat
Yi, Ahra
Vázquez, Ricardo Javier
Quek, Glenn
Promarak, Vinich
Kim, Hyo Jung
Bazan, Guillermo C.
Nguyen, Thuc‐Quyen
description Organic electrochemical transistors (OECTs) have gained considerable attention due to their potential applications in emerging biosensor platforms. The use of conjugated polyelectrolytes (CPEs) as active materials in OECTs is particularly advantageous owing to their functional, water‐processable, and biocompatible nature, as well as their tunable electronic and ionic transport properties. However, there exists a lack of systematic studies of the structure‐property relationships of these materials with respect to OECT performance. This study shows how by tuning the molecular weight of self‐doped CPE (CPE‐K) it is possible to fabricate OECTs with a µC * value of 14.7 F cm −1 V −1 s −1 , one order of magnitude higher than previously reported CPE‐based devices. Furthermore, OECTs with a transconductance of 120 mS are demonstrated via device engineering. While CPE‐K batches with different molecular weights show good doping behavior and high volumetric capacitance, as confirmed by spectroelectrochemistry and electrochemical impedance spectroscopy, the medium molecular weight possesses the highest carrier mobility of ≈0.1 cm 2 V −1 s −1 leading to the highest transconductance. The enhanced charge transport is due to a favorable charge percolation pathway, as revealed by the combination of X‐ray analysis and conductive atomic force microscope. These insights provide guidelines for further improving the performance of CPE‐based OECTs.
doi_str_mv 10.1002/adfm.202310852
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2914382540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2914382540</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-24eabea9cd63e7df4375f9d016c81aeea7d74078d00933fc50d032c52dc69a7b3</originalsourceid><addsrcrecordid>eNo9kUFOwzAQRS0EEqWwZW2JdcrYTuJkiUqBSkVFUAS7yLWdNlUSB9tB6o4jcABOx0lIG9TV_Bn9_2bxEbokMCIA9FqovBpRoIxAEtEjNCAxiQMGNDk-aPJ-is6c2wAQzlk4QD_TqhHSY5PjR1Nq2ZbC4jddrNbdrcZ-rfHU1IXEolZ40hm83a8LK2rXGLtPvugy__36vjWNVnhs6k27Er6TT6bc6j5Tbr12-LnbPkXtsTd4bldiR_qHyrWuCinKnlw4b6w7Rye5KJ2--J9D9Ho3WYwfgtn8fjq-mQWSAfcBDbVYapFKFTPNVR4yHuWpAhLLhAitBVc8BJ4ogJSxXEaggFEZUSXjVPAlG6KrnttY89Fq57ONaW3dvcxoSkKW0CiEzjXqXdIa56zOs8YWlbDbjEC2ayDbNZAdGmB_NP9-Pg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2914382540</pqid></control><display><type>article</type><title>Impact of Molecular Weight on the Ionic and Electronic Transport of Self‐Doped Conjugated Polyelectrolytes Relevant to Organic Electrochemical Transistors</title><source>Wiley Journals</source><creator>Chae, Sangmin ; Nguyen‐Dang, Tung ; Chatsirisupachai, Jirat ; Yi, Ahra ; Vázquez, Ricardo Javier ; Quek, Glenn ; Promarak, Vinich ; Kim, Hyo Jung ; Bazan, Guillermo C. ; Nguyen, Thuc‐Quyen</creator><creatorcontrib>Chae, Sangmin ; Nguyen‐Dang, Tung ; Chatsirisupachai, Jirat ; Yi, Ahra ; Vázquez, Ricardo Javier ; Quek, Glenn ; Promarak, Vinich ; Kim, Hyo Jung ; Bazan, Guillermo C. ; Nguyen, Thuc‐Quyen</creatorcontrib><description>Organic electrochemical transistors (OECTs) have gained considerable attention due to their potential applications in emerging biosensor platforms. The use of conjugated polyelectrolytes (CPEs) as active materials in OECTs is particularly advantageous owing to their functional, water‐processable, and biocompatible nature, as well as their tunable electronic and ionic transport properties. However, there exists a lack of systematic studies of the structure‐property relationships of these materials with respect to OECT performance. This study shows how by tuning the molecular weight of self‐doped CPE (CPE‐K) it is possible to fabricate OECTs with a µC * value of 14.7 F cm −1 V −1 s −1 , one order of magnitude higher than previously reported CPE‐based devices. Furthermore, OECTs with a transconductance of 120 mS are demonstrated via device engineering. While CPE‐K batches with different molecular weights show good doping behavior and high volumetric capacitance, as confirmed by spectroelectrochemistry and electrochemical impedance spectroscopy, the medium molecular weight possesses the highest carrier mobility of ≈0.1 cm 2 V −1 s −1 leading to the highest transconductance. The enhanced charge transport is due to a favorable charge percolation pathway, as revealed by the combination of X‐ray analysis and conductive atomic force microscope. These insights provide guidelines for further improving the performance of CPE‐based OECTs.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202310852</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Biocompatibility ; Biosensors ; Carrier mobility ; Charge transport ; Electrochemical impedance spectroscopy ; Electron transport ; Molecular weight ; Percolation ; Polyelectrolytes ; Transconductance ; Transistors ; Transport properties</subject><ispartof>Advanced functional materials, 2024-01, Vol.34 (3)</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-24eabea9cd63e7df4375f9d016c81aeea7d74078d00933fc50d032c52dc69a7b3</citedby><cites>FETCH-LOGICAL-c307t-24eabea9cd63e7df4375f9d016c81aeea7d74078d00933fc50d032c52dc69a7b3</cites><orcidid>0000-0002-8364-7517 ; 0000-0002-0655-7577</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chae, Sangmin</creatorcontrib><creatorcontrib>Nguyen‐Dang, Tung</creatorcontrib><creatorcontrib>Chatsirisupachai, Jirat</creatorcontrib><creatorcontrib>Yi, Ahra</creatorcontrib><creatorcontrib>Vázquez, Ricardo Javier</creatorcontrib><creatorcontrib>Quek, Glenn</creatorcontrib><creatorcontrib>Promarak, Vinich</creatorcontrib><creatorcontrib>Kim, Hyo Jung</creatorcontrib><creatorcontrib>Bazan, Guillermo C.</creatorcontrib><creatorcontrib>Nguyen, Thuc‐Quyen</creatorcontrib><title>Impact of Molecular Weight on the Ionic and Electronic Transport of Self‐Doped Conjugated Polyelectrolytes Relevant to Organic Electrochemical Transistors</title><title>Advanced functional materials</title><description>Organic electrochemical transistors (OECTs) have gained considerable attention due to their potential applications in emerging biosensor platforms. The use of conjugated polyelectrolytes (CPEs) as active materials in OECTs is particularly advantageous owing to their functional, water‐processable, and biocompatible nature, as well as their tunable electronic and ionic transport properties. However, there exists a lack of systematic studies of the structure‐property relationships of these materials with respect to OECT performance. This study shows how by tuning the molecular weight of self‐doped CPE (CPE‐K) it is possible to fabricate OECTs with a µC * value of 14.7 F cm −1 V −1 s −1 , one order of magnitude higher than previously reported CPE‐based devices. Furthermore, OECTs with a transconductance of 120 mS are demonstrated via device engineering. While CPE‐K batches with different molecular weights show good doping behavior and high volumetric capacitance, as confirmed by spectroelectrochemistry and electrochemical impedance spectroscopy, the medium molecular weight possesses the highest carrier mobility of ≈0.1 cm 2 V −1 s −1 leading to the highest transconductance. The enhanced charge transport is due to a favorable charge percolation pathway, as revealed by the combination of X‐ray analysis and conductive atomic force microscope. These insights provide guidelines for further improving the performance of CPE‐based OECTs.</description><subject>Biocompatibility</subject><subject>Biosensors</subject><subject>Carrier mobility</subject><subject>Charge transport</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electron transport</subject><subject>Molecular weight</subject><subject>Percolation</subject><subject>Polyelectrolytes</subject><subject>Transconductance</subject><subject>Transistors</subject><subject>Transport properties</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kUFOwzAQRS0EEqWwZW2JdcrYTuJkiUqBSkVFUAS7yLWdNlUSB9tB6o4jcABOx0lIG9TV_Bn9_2bxEbokMCIA9FqovBpRoIxAEtEjNCAxiQMGNDk-aPJ-is6c2wAQzlk4QD_TqhHSY5PjR1Nq2ZbC4jddrNbdrcZ-rfHU1IXEolZ40hm83a8LK2rXGLtPvugy__36vjWNVnhs6k27Er6TT6bc6j5Tbr12-LnbPkXtsTd4bldiR_qHyrWuCinKnlw4b6w7Rye5KJ2--J9D9Ho3WYwfgtn8fjq-mQWSAfcBDbVYapFKFTPNVR4yHuWpAhLLhAitBVc8BJ4ogJSxXEaggFEZUSXjVPAlG6KrnttY89Fq57ONaW3dvcxoSkKW0CiEzjXqXdIa56zOs8YWlbDbjEC2ayDbNZAdGmB_NP9-Pg</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Chae, Sangmin</creator><creator>Nguyen‐Dang, Tung</creator><creator>Chatsirisupachai, Jirat</creator><creator>Yi, Ahra</creator><creator>Vázquez, Ricardo Javier</creator><creator>Quek, Glenn</creator><creator>Promarak, Vinich</creator><creator>Kim, Hyo Jung</creator><creator>Bazan, Guillermo C.</creator><creator>Nguyen, Thuc‐Quyen</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8364-7517</orcidid><orcidid>https://orcid.org/0000-0002-0655-7577</orcidid></search><sort><creationdate>20240101</creationdate><title>Impact of Molecular Weight on the Ionic and Electronic Transport of Self‐Doped Conjugated Polyelectrolytes Relevant to Organic Electrochemical Transistors</title><author>Chae, Sangmin ; Nguyen‐Dang, Tung ; Chatsirisupachai, Jirat ; Yi, Ahra ; Vázquez, Ricardo Javier ; Quek, Glenn ; Promarak, Vinich ; Kim, Hyo Jung ; Bazan, Guillermo C. ; Nguyen, Thuc‐Quyen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-24eabea9cd63e7df4375f9d016c81aeea7d74078d00933fc50d032c52dc69a7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biocompatibility</topic><topic>Biosensors</topic><topic>Carrier mobility</topic><topic>Charge transport</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electron transport</topic><topic>Molecular weight</topic><topic>Percolation</topic><topic>Polyelectrolytes</topic><topic>Transconductance</topic><topic>Transistors</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chae, Sangmin</creatorcontrib><creatorcontrib>Nguyen‐Dang, Tung</creatorcontrib><creatorcontrib>Chatsirisupachai, Jirat</creatorcontrib><creatorcontrib>Yi, Ahra</creatorcontrib><creatorcontrib>Vázquez, Ricardo Javier</creatorcontrib><creatorcontrib>Quek, Glenn</creatorcontrib><creatorcontrib>Promarak, Vinich</creatorcontrib><creatorcontrib>Kim, Hyo Jung</creatorcontrib><creatorcontrib>Bazan, Guillermo C.</creatorcontrib><creatorcontrib>Nguyen, Thuc‐Quyen</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chae, Sangmin</au><au>Nguyen‐Dang, Tung</au><au>Chatsirisupachai, Jirat</au><au>Yi, Ahra</au><au>Vázquez, Ricardo Javier</au><au>Quek, Glenn</au><au>Promarak, Vinich</au><au>Kim, Hyo Jung</au><au>Bazan, Guillermo C.</au><au>Nguyen, Thuc‐Quyen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of Molecular Weight on the Ionic and Electronic Transport of Self‐Doped Conjugated Polyelectrolytes Relevant to Organic Electrochemical Transistors</atitle><jtitle>Advanced functional materials</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>34</volume><issue>3</issue><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Organic electrochemical transistors (OECTs) have gained considerable attention due to their potential applications in emerging biosensor platforms. The use of conjugated polyelectrolytes (CPEs) as active materials in OECTs is particularly advantageous owing to their functional, water‐processable, and biocompatible nature, as well as their tunable electronic and ionic transport properties. However, there exists a lack of systematic studies of the structure‐property relationships of these materials with respect to OECT performance. This study shows how by tuning the molecular weight of self‐doped CPE (CPE‐K) it is possible to fabricate OECTs with a µC * value of 14.7 F cm −1 V −1 s −1 , one order of magnitude higher than previously reported CPE‐based devices. Furthermore, OECTs with a transconductance of 120 mS are demonstrated via device engineering. While CPE‐K batches with different molecular weights show good doping behavior and high volumetric capacitance, as confirmed by spectroelectrochemistry and electrochemical impedance spectroscopy, the medium molecular weight possesses the highest carrier mobility of ≈0.1 cm 2 V −1 s −1 leading to the highest transconductance. The enhanced charge transport is due to a favorable charge percolation pathway, as revealed by the combination of X‐ray analysis and conductive atomic force microscope. These insights provide guidelines for further improving the performance of CPE‐based OECTs.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202310852</doi><orcidid>https://orcid.org/0000-0002-8364-7517</orcidid><orcidid>https://orcid.org/0000-0002-0655-7577</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-01, Vol.34 (3)
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2914382540
source Wiley Journals
subjects Biocompatibility
Biosensors
Carrier mobility
Charge transport
Electrochemical impedance spectroscopy
Electron transport
Molecular weight
Percolation
Polyelectrolytes
Transconductance
Transistors
Transport properties
title Impact of Molecular Weight on the Ionic and Electronic Transport of Self‐Doped Conjugated Polyelectrolytes Relevant to Organic Electrochemical Transistors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T14%3A32%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20Molecular%20Weight%20on%20the%20Ionic%20and%20Electronic%20Transport%20of%20Self%E2%80%90Doped%20Conjugated%20Polyelectrolytes%20Relevant%20to%20Organic%20Electrochemical%20Transistors&rft.jtitle=Advanced%20functional%20materials&rft.au=Chae,%20Sangmin&rft.date=2024-01-01&rft.volume=34&rft.issue=3&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202310852&rft_dat=%3Cproquest_cross%3E2914382540%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2914382540&rft_id=info:pmid/&rfr_iscdi=true