Mechanical properties and the mechanism of microscopic thermal damage of basalt subjected to high-temperature treatment
To explore the thermal damage deterioration characteristics of basalt, the evolution of physical parameters, mechanical properties and failure modes was investigated. Based on computed tomography image reconstruction techniques, the spatial distribution and morphological characteristics of the pores...
Gespeichert in:
Veröffentlicht in: | Natural hazards (Dordrecht) 2024, Vol.120 (1), p.41-61 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 61 |
---|---|
container_issue | 1 |
container_start_page | 41 |
container_title | Natural hazards (Dordrecht) |
container_volume | 120 |
creator | Qiao, Jiaxing Wang, Gang Song, Leibo Liu, Xiqi Zhou, Changbing Niu, Yong Liu, Bolong |
description | To explore the thermal damage deterioration characteristics of basalt, the evolution of physical parameters, mechanical properties and failure modes was investigated. Based on computed tomography image reconstruction techniques, the spatial distribution and morphological characteristics of the pores of basalt were explored. The results indicate that thermal damage leads to the phase transition of basalt mineral grains and uncoordinated expansion and deformation, increasing the thermal deterioration of rock specimens. The temperature of 800 °C is the threshold for rapidly deteriorated physical properties of basalt, which has deformation characterized by the transition from ductility to brittleness. With the increase in temperature, basalt specimens transit from shear failure to tensile-shear combined failure, and then to tensile splitting failure. Meanwhile, irregular block-shaped collapse is transformed to strip-shaped rock fragments spalling. The crack width based on CT technology and three-dimensional (3D) image reconstruction of the crack volume can quantify the structural deterioration characteristics of basalt induced by thermal damage. When the temperature increases: 25 °C → 600 °C → 1000 °C, the corresponding porosity of the rock changes from 6.86% → 7.04% → 18.02%, exhibiting an evolution from low-speed development to high-speed growth. The thermal damage sensitivity of different lithologies at high temperatures differs, among which, the thermal damage sensitivity of marble is the highest, followed by granite and then basalt, the sensitivity of sandstone is the lowest. |
doi_str_mv | 10.1007/s11069-023-06191-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2913780680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2913780680</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-a18ff698b9311c48bd816edb0294ea831cf97cc478fc80da5c1cb3a54b44f7e83</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8Bz9WZptsmR1n8ByteFLyFNJ1uu2zbNUkRv72pFbx5Gob33m-Yx9glwjUCFDceEXKVQCoSyFFhIo_YAldFXGUGx2wBKsUEBLyfsjPvdwCIeaoW7POZbGP61po9P7jhQC605LnpKx4a4t2s-o4PNe9a6wZvh0NrJ9F1MVOZzmxpUkvjzT5wP5Y7soFifuBNu22SQF3EmjA64sGRCR314Zyd1Gbv6eJ3Ltnb_d3r-jHZvDw8rW83iRFZGhKDsq5zJUslEG0my0piTlUJqcrISIG2VoW1WSFrK6EyK4u2FGaVlVlWFyTFkl3N3Pjcx0g-6N0wuj6e1KlCUUjIJURXOrumB72jWh9c2xn3pRH0VLCeC9axYP1TsJ7QYg75aO635P7Q_6S-ARJ2gNk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2913780680</pqid></control><display><type>article</type><title>Mechanical properties and the mechanism of microscopic thermal damage of basalt subjected to high-temperature treatment</title><source>SpringerLink Journals</source><creator>Qiao, Jiaxing ; Wang, Gang ; Song, Leibo ; Liu, Xiqi ; Zhou, Changbing ; Niu, Yong ; Liu, Bolong</creator><creatorcontrib>Qiao, Jiaxing ; Wang, Gang ; Song, Leibo ; Liu, Xiqi ; Zhou, Changbing ; Niu, Yong ; Liu, Bolong</creatorcontrib><description>To explore the thermal damage deterioration characteristics of basalt, the evolution of physical parameters, mechanical properties and failure modes was investigated. Based on computed tomography image reconstruction techniques, the spatial distribution and morphological characteristics of the pores of basalt were explored. The results indicate that thermal damage leads to the phase transition of basalt mineral grains and uncoordinated expansion and deformation, increasing the thermal deterioration of rock specimens. The temperature of 800 °C is the threshold for rapidly deteriorated physical properties of basalt, which has deformation characterized by the transition from ductility to brittleness. With the increase in temperature, basalt specimens transit from shear failure to tensile-shear combined failure, and then to tensile splitting failure. Meanwhile, irregular block-shaped collapse is transformed to strip-shaped rock fragments spalling. The crack width based on CT technology and three-dimensional (3D) image reconstruction of the crack volume can quantify the structural deterioration characteristics of basalt induced by thermal damage. When the temperature increases: 25 °C → 600 °C → 1000 °C, the corresponding porosity of the rock changes from 6.86% → 7.04% → 18.02%, exhibiting an evolution from low-speed development to high-speed growth. The thermal damage sensitivity of different lithologies at high temperatures differs, among which, the thermal damage sensitivity of marble is the highest, followed by granite and then basalt, the sensitivity of sandstone is the lowest.</description><identifier>ISSN: 0921-030X</identifier><identifier>EISSN: 1573-0840</identifier><identifier>DOI: 10.1007/s11069-023-06191-8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Basalt ; Brittleness ; Civil Engineering ; Computed tomography ; Damage ; Deformation ; Deterioration ; Ductile-brittle transition ; Ductility ; Earth and Environmental Science ; Earth Sciences ; Environmental Management ; Evolution ; Failure modes ; Geophysics/Geodesy ; Geotechnical Engineering & Applied Earth Sciences ; High temperature ; Hydrogeology ; Image processing ; Image reconstruction ; Low speed ; Mechanical properties ; Medical imaging ; Natural Hazards ; Original Paper ; Phase transitions ; Physical characteristics ; Physical properties ; Porosity ; Rocks ; Sandstone ; Sedimentary rocks ; Sensitivity ; Shear ; Spalling ; Spatial distribution ; Temperature ; Temperature rise ; Tomography</subject><ispartof>Natural hazards (Dordrecht), 2024, Vol.120 (1), p.41-61</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a342t-a18ff698b9311c48bd816edb0294ea831cf97cc478fc80da5c1cb3a54b44f7e83</citedby><cites>FETCH-LOGICAL-a342t-a18ff698b9311c48bd816edb0294ea831cf97cc478fc80da5c1cb3a54b44f7e83</cites><orcidid>0000-0002-4212-2968</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11069-023-06191-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11069-023-06191-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Qiao, Jiaxing</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Song, Leibo</creatorcontrib><creatorcontrib>Liu, Xiqi</creatorcontrib><creatorcontrib>Zhou, Changbing</creatorcontrib><creatorcontrib>Niu, Yong</creatorcontrib><creatorcontrib>Liu, Bolong</creatorcontrib><title>Mechanical properties and the mechanism of microscopic thermal damage of basalt subjected to high-temperature treatment</title><title>Natural hazards (Dordrecht)</title><addtitle>Nat Hazards</addtitle><description>To explore the thermal damage deterioration characteristics of basalt, the evolution of physical parameters, mechanical properties and failure modes was investigated. Based on computed tomography image reconstruction techniques, the spatial distribution and morphological characteristics of the pores of basalt were explored. The results indicate that thermal damage leads to the phase transition of basalt mineral grains and uncoordinated expansion and deformation, increasing the thermal deterioration of rock specimens. The temperature of 800 °C is the threshold for rapidly deteriorated physical properties of basalt, which has deformation characterized by the transition from ductility to brittleness. With the increase in temperature, basalt specimens transit from shear failure to tensile-shear combined failure, and then to tensile splitting failure. Meanwhile, irregular block-shaped collapse is transformed to strip-shaped rock fragments spalling. The crack width based on CT technology and three-dimensional (3D) image reconstruction of the crack volume can quantify the structural deterioration characteristics of basalt induced by thermal damage. When the temperature increases: 25 °C → 600 °C → 1000 °C, the corresponding porosity of the rock changes from 6.86% → 7.04% → 18.02%, exhibiting an evolution from low-speed development to high-speed growth. The thermal damage sensitivity of different lithologies at high temperatures differs, among which, the thermal damage sensitivity of marble is the highest, followed by granite and then basalt, the sensitivity of sandstone is the lowest.</description><subject>Basalt</subject><subject>Brittleness</subject><subject>Civil Engineering</subject><subject>Computed tomography</subject><subject>Damage</subject><subject>Deformation</subject><subject>Deterioration</subject><subject>Ductile-brittle transition</subject><subject>Ductility</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environmental Management</subject><subject>Evolution</subject><subject>Failure modes</subject><subject>Geophysics/Geodesy</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>High temperature</subject><subject>Hydrogeology</subject><subject>Image processing</subject><subject>Image reconstruction</subject><subject>Low speed</subject><subject>Mechanical properties</subject><subject>Medical imaging</subject><subject>Natural Hazards</subject><subject>Original Paper</subject><subject>Phase transitions</subject><subject>Physical characteristics</subject><subject>Physical properties</subject><subject>Porosity</subject><subject>Rocks</subject><subject>Sandstone</subject><subject>Sedimentary rocks</subject><subject>Sensitivity</subject><subject>Shear</subject><subject>Spalling</subject><subject>Spatial distribution</subject><subject>Temperature</subject><subject>Temperature rise</subject><subject>Tomography</subject><issn>0921-030X</issn><issn>1573-0840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE9LxDAQxYMouK5-AU8Bz9WZptsmR1n8ByteFLyFNJ1uu2zbNUkRv72pFbx5Gob33m-Yx9glwjUCFDceEXKVQCoSyFFhIo_YAldFXGUGx2wBKsUEBLyfsjPvdwCIeaoW7POZbGP61po9P7jhQC605LnpKx4a4t2s-o4PNe9a6wZvh0NrJ9F1MVOZzmxpUkvjzT5wP5Y7soFifuBNu22SQF3EmjA64sGRCR314Zyd1Gbv6eJ3Ltnb_d3r-jHZvDw8rW83iRFZGhKDsq5zJUslEG0my0piTlUJqcrISIG2VoW1WSFrK6EyK4u2FGaVlVlWFyTFkl3N3Pjcx0g-6N0wuj6e1KlCUUjIJURXOrumB72jWh9c2xn3pRH0VLCeC9axYP1TsJ7QYg75aO635P7Q_6S-ARJ2gNk</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Qiao, Jiaxing</creator><creator>Wang, Gang</creator><creator>Song, Leibo</creator><creator>Liu, Xiqi</creator><creator>Zhou, Changbing</creator><creator>Niu, Yong</creator><creator>Liu, Bolong</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-4212-2968</orcidid></search><sort><creationdate>2024</creationdate><title>Mechanical properties and the mechanism of microscopic thermal damage of basalt subjected to high-temperature treatment</title><author>Qiao, Jiaxing ; Wang, Gang ; Song, Leibo ; Liu, Xiqi ; Zhou, Changbing ; Niu, Yong ; Liu, Bolong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-a18ff698b9311c48bd816edb0294ea831cf97cc478fc80da5c1cb3a54b44f7e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Basalt</topic><topic>Brittleness</topic><topic>Civil Engineering</topic><topic>Computed tomography</topic><topic>Damage</topic><topic>Deformation</topic><topic>Deterioration</topic><topic>Ductile-brittle transition</topic><topic>Ductility</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environmental Management</topic><topic>Evolution</topic><topic>Failure modes</topic><topic>Geophysics/Geodesy</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>High temperature</topic><topic>Hydrogeology</topic><topic>Image processing</topic><topic>Image reconstruction</topic><topic>Low speed</topic><topic>Mechanical properties</topic><topic>Medical imaging</topic><topic>Natural Hazards</topic><topic>Original Paper</topic><topic>Phase transitions</topic><topic>Physical characteristics</topic><topic>Physical properties</topic><topic>Porosity</topic><topic>Rocks</topic><topic>Sandstone</topic><topic>Sedimentary rocks</topic><topic>Sensitivity</topic><topic>Shear</topic><topic>Spalling</topic><topic>Spatial distribution</topic><topic>Temperature</topic><topic>Temperature rise</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiao, Jiaxing</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Song, Leibo</creatorcontrib><creatorcontrib>Liu, Xiqi</creatorcontrib><creatorcontrib>Zhou, Changbing</creatorcontrib><creatorcontrib>Niu, Yong</creatorcontrib><creatorcontrib>Liu, Bolong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Natural hazards (Dordrecht)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiao, Jiaxing</au><au>Wang, Gang</au><au>Song, Leibo</au><au>Liu, Xiqi</au><au>Zhou, Changbing</au><au>Niu, Yong</au><au>Liu, Bolong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical properties and the mechanism of microscopic thermal damage of basalt subjected to high-temperature treatment</atitle><jtitle>Natural hazards (Dordrecht)</jtitle><stitle>Nat Hazards</stitle><date>2024</date><risdate>2024</risdate><volume>120</volume><issue>1</issue><spage>41</spage><epage>61</epage><pages>41-61</pages><issn>0921-030X</issn><eissn>1573-0840</eissn><abstract>To explore the thermal damage deterioration characteristics of basalt, the evolution of physical parameters, mechanical properties and failure modes was investigated. Based on computed tomography image reconstruction techniques, the spatial distribution and morphological characteristics of the pores of basalt were explored. The results indicate that thermal damage leads to the phase transition of basalt mineral grains and uncoordinated expansion and deformation, increasing the thermal deterioration of rock specimens. The temperature of 800 °C is the threshold for rapidly deteriorated physical properties of basalt, which has deformation characterized by the transition from ductility to brittleness. With the increase in temperature, basalt specimens transit from shear failure to tensile-shear combined failure, and then to tensile splitting failure. Meanwhile, irregular block-shaped collapse is transformed to strip-shaped rock fragments spalling. The crack width based on CT technology and three-dimensional (3D) image reconstruction of the crack volume can quantify the structural deterioration characteristics of basalt induced by thermal damage. When the temperature increases: 25 °C → 600 °C → 1000 °C, the corresponding porosity of the rock changes from 6.86% → 7.04% → 18.02%, exhibiting an evolution from low-speed development to high-speed growth. The thermal damage sensitivity of different lithologies at high temperatures differs, among which, the thermal damage sensitivity of marble is the highest, followed by granite and then basalt, the sensitivity of sandstone is the lowest.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11069-023-06191-8</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-4212-2968</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-030X |
ispartof | Natural hazards (Dordrecht), 2024, Vol.120 (1), p.41-61 |
issn | 0921-030X 1573-0840 |
language | eng |
recordid | cdi_proquest_journals_2913780680 |
source | SpringerLink Journals |
subjects | Basalt Brittleness Civil Engineering Computed tomography Damage Deformation Deterioration Ductile-brittle transition Ductility Earth and Environmental Science Earth Sciences Environmental Management Evolution Failure modes Geophysics/Geodesy Geotechnical Engineering & Applied Earth Sciences High temperature Hydrogeology Image processing Image reconstruction Low speed Mechanical properties Medical imaging Natural Hazards Original Paper Phase transitions Physical characteristics Physical properties Porosity Rocks Sandstone Sedimentary rocks Sensitivity Shear Spalling Spatial distribution Temperature Temperature rise Tomography |
title | Mechanical properties and the mechanism of microscopic thermal damage of basalt subjected to high-temperature treatment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T07%3A44%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20properties%20and%20the%20mechanism%20of%20microscopic%20thermal%20damage%20of%20basalt%20subjected%20to%20high-temperature%20treatment&rft.jtitle=Natural%20hazards%20(Dordrecht)&rft.au=Qiao,%20Jiaxing&rft.date=2024&rft.volume=120&rft.issue=1&rft.spage=41&rft.epage=61&rft.pages=41-61&rft.issn=0921-030X&rft.eissn=1573-0840&rft_id=info:doi/10.1007/s11069-023-06191-8&rft_dat=%3Cproquest_cross%3E2913780680%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2913780680&rft_id=info:pmid/&rfr_iscdi=true |