Evaluating the Production of Second-Generation Ethanol by Spathaspora passalidarum Immobilized on Sugarcane Bagasse

Second-generation (2G) ethanol is obtained from the processing of lignocellulosic biomasses, such as sugarcane bagasse. However, several obstacles need to be overcome to make the industrial fermentation of the sugarcane bagasse hydrolysates viable, such as the time and capital expense of the process...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioenergy research 2023-12, Vol.16 (4), p.2022-2035
Hauptverfasser: Soares, Lauren B., Santana, Marcel B., da Silveira, Juliane M., do Nascimento, Liana L., de Meirelles, Mateus Y., Henriques, Rosana O., Zanella, Eduardo, Araujo, Michelle F., Stambuk, Boris U., da Costa, Aline C., Ienczak, Jaciane L., Furigo, Agenor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2035
container_issue 4
container_start_page 2022
container_title Bioenergy research
container_volume 16
creator Soares, Lauren B.
Santana, Marcel B.
da Silveira, Juliane M.
do Nascimento, Liana L.
de Meirelles, Mateus Y.
Henriques, Rosana O.
Zanella, Eduardo
Araujo, Michelle F.
Stambuk, Boris U.
da Costa, Aline C.
Ienczak, Jaciane L.
Furigo, Agenor
description Second-generation (2G) ethanol is obtained from the processing of lignocellulosic biomasses, such as sugarcane bagasse. However, several obstacles need to be overcome to make the industrial fermentation of the sugarcane bagasse hydrolysates viable, such as the time and capital expense of the process when compared with first-generation (1G) ethanol (produced by sugary and starchy raw materials), the inhibitors generated, and the process scaling-up. The intrinsic release of inhibitor compounds during the deconstruction of lignocellulosic material into sugars is one of the biggest challenges in the fermentation step. Cell immobilization can be used as a strategy to protect microorganisms from these inhibitory compounds. Immobilization can add costs to the process; therefore, the use of materials already available in the ethanol production is interesting from an economic point of view. In this sense, the objective of this study was to evaluate the immobilization of Spathaspora passalidarum in raw, alkaline, and acid-pretreated sugarcane bagasse. In addition, the fermentation of hemicellulosic hydrolysate (HH) from acid pretreatment of sugarcane bagasse was evaluated by immobilized and the free cells. Fermentation by S. passalidarum immobilized on sugarcane bagasse obtained growth and product yield factor of Y P/S (0.35 g/g) and Y X/S (0.43 g/g), respectively, against Y P/S (0.27 g/g) and Y X/S (0.086 g/g) for the cell-free assay. After 24 h of fermentation, it was possible to reach a productivity of 0.153 g/(L·h) and a yield of 68.37% with immobilized cells, which were also superior to the fermentation with free cells (0.148 g/(L·h) and 54%). Based on the results, it was possible to verify that sugarcane bagasse can be used not only as an effective source of carbon for the production of 2G ethanol, but also as a support for cell immobilization, increasing the productivity of the process.
doi_str_mv 10.1007/s12155-023-10634-2
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2913780141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A779343568</galeid><sourcerecordid>A779343568</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-8f3c3e6a93d03e34842241cadb73ef1c6ddb0f13cb9708e5d746d9df8f35f0b93</originalsourceid><addsrcrecordid>eNp9kV1rFTEQhpeiYK3-Aa8Cvd6ar_3IZS3HWihUOPU6zCaTbcpusia7QvvrTXukRRDJRTLD8yRD3qr6xOgZo7T7nBlnTVNTLmpGWyFrflQdMyVUzbjkb17OQr6r3ud8T2lLJVXHVd79gmmD1YeRrHdIvqdoN7P6GEh0ZI8mBltfYsAEz83degchTmR4IPsFSpGXmIAskDNM3kLaZnI1z3Hwk39ES4qy30ZIBgKSLzAWDj9Ubx1MGT_-2U-qH193txff6uuby6uL8-vaiL5d694JI7AFJSwVKGQvOZfMgB06gY6Z1tqBOibMoDraY2M72VplXfEaRwclTqrTw71Lij83zKu-j1sK5UnNFRNdT5lkr9QIE2ofXFwTmNlno8-7TgkpmrYv1Nk_qLIszr58Ejpf-n8J_CCYFHNO6PSS_AzpQTOqnzLTh8x0yUw_Z6Z5kcRBygUOI6bXif9j_QarC5oU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2913780141</pqid></control><display><type>article</type><title>Evaluating the Production of Second-Generation Ethanol by Spathaspora passalidarum Immobilized on Sugarcane Bagasse</title><source>SpringerNature Journals</source><creator>Soares, Lauren B. ; Santana, Marcel B. ; da Silveira, Juliane M. ; do Nascimento, Liana L. ; de Meirelles, Mateus Y. ; Henriques, Rosana O. ; Zanella, Eduardo ; Araujo, Michelle F. ; Stambuk, Boris U. ; da Costa, Aline C. ; Ienczak, Jaciane L. ; Furigo, Agenor</creator><creatorcontrib>Soares, Lauren B. ; Santana, Marcel B. ; da Silveira, Juliane M. ; do Nascimento, Liana L. ; de Meirelles, Mateus Y. ; Henriques, Rosana O. ; Zanella, Eduardo ; Araujo, Michelle F. ; Stambuk, Boris U. ; da Costa, Aline C. ; Ienczak, Jaciane L. ; Furigo, Agenor</creatorcontrib><description>Second-generation (2G) ethanol is obtained from the processing of lignocellulosic biomasses, such as sugarcane bagasse. However, several obstacles need to be overcome to make the industrial fermentation of the sugarcane bagasse hydrolysates viable, such as the time and capital expense of the process when compared with first-generation (1G) ethanol (produced by sugary and starchy raw materials), the inhibitors generated, and the process scaling-up. The intrinsic release of inhibitor compounds during the deconstruction of lignocellulosic material into sugars is one of the biggest challenges in the fermentation step. Cell immobilization can be used as a strategy to protect microorganisms from these inhibitory compounds. Immobilization can add costs to the process; therefore, the use of materials already available in the ethanol production is interesting from an economic point of view. In this sense, the objective of this study was to evaluate the immobilization of Spathaspora passalidarum in raw, alkaline, and acid-pretreated sugarcane bagasse. In addition, the fermentation of hemicellulosic hydrolysate (HH) from acid pretreatment of sugarcane bagasse was evaluated by immobilized and the free cells. Fermentation by S. passalidarum immobilized on sugarcane bagasse obtained growth and product yield factor of Y P/S (0.35 g/g) and Y X/S (0.43 g/g), respectively, against Y P/S (0.27 g/g) and Y X/S (0.086 g/g) for the cell-free assay. After 24 h of fermentation, it was possible to reach a productivity of 0.153 g/(L·h) and a yield of 68.37% with immobilized cells, which were also superior to the fermentation with free cells (0.148 g/(L·h) and 54%). Based on the results, it was possible to verify that sugarcane bagasse can be used not only as an effective source of carbon for the production of 2G ethanol, but also as a support for cell immobilization, increasing the productivity of the process.</description><identifier>ISSN: 1939-1234</identifier><identifier>EISSN: 1939-1242</identifier><identifier>DOI: 10.1007/s12155-023-10634-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Acetaldehyde ; Alcohol ; Alcohol, Denatured ; Bagasse ; Biomedical and Life Sciences ; Ethanol ; Fermentation ; Hydrolysates ; Immobilization ; Immobilized cells ; Life Sciences ; Lignocellulose ; Microorganisms ; Plant Breeding/Biotechnology ; Plant Ecology ; Plant Genetics and Genomics ; Plant Sciences ; Productivity ; Raw materials ; Spathaspora passalidarum ; Sugarcane ; Wood Science &amp; Technology</subject><ispartof>Bioenergy research, 2023-12, Vol.16 (4), p.2022-2035</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-8f3c3e6a93d03e34842241cadb73ef1c6ddb0f13cb9708e5d746d9df8f35f0b93</citedby><cites>FETCH-LOGICAL-c386t-8f3c3e6a93d03e34842241cadb73ef1c6ddb0f13cb9708e5d746d9df8f35f0b93</cites><orcidid>0000-0002-4106-6394</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12155-023-10634-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12155-023-10634-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Soares, Lauren B.</creatorcontrib><creatorcontrib>Santana, Marcel B.</creatorcontrib><creatorcontrib>da Silveira, Juliane M.</creatorcontrib><creatorcontrib>do Nascimento, Liana L.</creatorcontrib><creatorcontrib>de Meirelles, Mateus Y.</creatorcontrib><creatorcontrib>Henriques, Rosana O.</creatorcontrib><creatorcontrib>Zanella, Eduardo</creatorcontrib><creatorcontrib>Araujo, Michelle F.</creatorcontrib><creatorcontrib>Stambuk, Boris U.</creatorcontrib><creatorcontrib>da Costa, Aline C.</creatorcontrib><creatorcontrib>Ienczak, Jaciane L.</creatorcontrib><creatorcontrib>Furigo, Agenor</creatorcontrib><title>Evaluating the Production of Second-Generation Ethanol by Spathaspora passalidarum Immobilized on Sugarcane Bagasse</title><title>Bioenergy research</title><addtitle>Bioenerg. Res</addtitle><description>Second-generation (2G) ethanol is obtained from the processing of lignocellulosic biomasses, such as sugarcane bagasse. However, several obstacles need to be overcome to make the industrial fermentation of the sugarcane bagasse hydrolysates viable, such as the time and capital expense of the process when compared with first-generation (1G) ethanol (produced by sugary and starchy raw materials), the inhibitors generated, and the process scaling-up. The intrinsic release of inhibitor compounds during the deconstruction of lignocellulosic material into sugars is one of the biggest challenges in the fermentation step. Cell immobilization can be used as a strategy to protect microorganisms from these inhibitory compounds. Immobilization can add costs to the process; therefore, the use of materials already available in the ethanol production is interesting from an economic point of view. In this sense, the objective of this study was to evaluate the immobilization of Spathaspora passalidarum in raw, alkaline, and acid-pretreated sugarcane bagasse. In addition, the fermentation of hemicellulosic hydrolysate (HH) from acid pretreatment of sugarcane bagasse was evaluated by immobilized and the free cells. Fermentation by S. passalidarum immobilized on sugarcane bagasse obtained growth and product yield factor of Y P/S (0.35 g/g) and Y X/S (0.43 g/g), respectively, against Y P/S (0.27 g/g) and Y X/S (0.086 g/g) for the cell-free assay. After 24 h of fermentation, it was possible to reach a productivity of 0.153 g/(L·h) and a yield of 68.37% with immobilized cells, which were also superior to the fermentation with free cells (0.148 g/(L·h) and 54%). Based on the results, it was possible to verify that sugarcane bagasse can be used not only as an effective source of carbon for the production of 2G ethanol, but also as a support for cell immobilization, increasing the productivity of the process.</description><subject>Acetaldehyde</subject><subject>Alcohol</subject><subject>Alcohol, Denatured</subject><subject>Bagasse</subject><subject>Biomedical and Life Sciences</subject><subject>Ethanol</subject><subject>Fermentation</subject><subject>Hydrolysates</subject><subject>Immobilization</subject><subject>Immobilized cells</subject><subject>Life Sciences</subject><subject>Lignocellulose</subject><subject>Microorganisms</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Ecology</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Sciences</subject><subject>Productivity</subject><subject>Raw materials</subject><subject>Spathaspora passalidarum</subject><subject>Sugarcane</subject><subject>Wood Science &amp; Technology</subject><issn>1939-1234</issn><issn>1939-1242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kV1rFTEQhpeiYK3-Aa8Cvd6ar_3IZS3HWihUOPU6zCaTbcpusia7QvvrTXukRRDJRTLD8yRD3qr6xOgZo7T7nBlnTVNTLmpGWyFrflQdMyVUzbjkb17OQr6r3ud8T2lLJVXHVd79gmmD1YeRrHdIvqdoN7P6GEh0ZI8mBltfYsAEz83degchTmR4IPsFSpGXmIAskDNM3kLaZnI1z3Hwk39ES4qy30ZIBgKSLzAWDj9Ubx1MGT_-2U-qH193txff6uuby6uL8-vaiL5d694JI7AFJSwVKGQvOZfMgB06gY6Z1tqBOibMoDraY2M72VplXfEaRwclTqrTw71Lij83zKu-j1sK5UnNFRNdT5lkr9QIE2ofXFwTmNlno8-7TgkpmrYv1Nk_qLIszr58Ejpf-n8J_CCYFHNO6PSS_AzpQTOqnzLTh8x0yUw_Z6Z5kcRBygUOI6bXif9j_QarC5oU</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Soares, Lauren B.</creator><creator>Santana, Marcel B.</creator><creator>da Silveira, Juliane M.</creator><creator>do Nascimento, Liana L.</creator><creator>de Meirelles, Mateus Y.</creator><creator>Henriques, Rosana O.</creator><creator>Zanella, Eduardo</creator><creator>Araujo, Michelle F.</creator><creator>Stambuk, Boris U.</creator><creator>da Costa, Aline C.</creator><creator>Ienczak, Jaciane L.</creator><creator>Furigo, Agenor</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L7M</scope><scope>LK8</scope><scope>M0C</scope><scope>M2P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-4106-6394</orcidid></search><sort><creationdate>20231201</creationdate><title>Evaluating the Production of Second-Generation Ethanol by Spathaspora passalidarum Immobilized on Sugarcane Bagasse</title><author>Soares, Lauren B. ; Santana, Marcel B. ; da Silveira, Juliane M. ; do Nascimento, Liana L. ; de Meirelles, Mateus Y. ; Henriques, Rosana O. ; Zanella, Eduardo ; Araujo, Michelle F. ; Stambuk, Boris U. ; da Costa, Aline C. ; Ienczak, Jaciane L. ; Furigo, Agenor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-8f3c3e6a93d03e34842241cadb73ef1c6ddb0f13cb9708e5d746d9df8f35f0b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acetaldehyde</topic><topic>Alcohol</topic><topic>Alcohol, Denatured</topic><topic>Bagasse</topic><topic>Biomedical and Life Sciences</topic><topic>Ethanol</topic><topic>Fermentation</topic><topic>Hydrolysates</topic><topic>Immobilization</topic><topic>Immobilized cells</topic><topic>Life Sciences</topic><topic>Lignocellulose</topic><topic>Microorganisms</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Ecology</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Sciences</topic><topic>Productivity</topic><topic>Raw materials</topic><topic>Spathaspora passalidarum</topic><topic>Sugarcane</topic><topic>Wood Science &amp; Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soares, Lauren B.</creatorcontrib><creatorcontrib>Santana, Marcel B.</creatorcontrib><creatorcontrib>da Silveira, Juliane M.</creatorcontrib><creatorcontrib>do Nascimento, Liana L.</creatorcontrib><creatorcontrib>de Meirelles, Mateus Y.</creatorcontrib><creatorcontrib>Henriques, Rosana O.</creatorcontrib><creatorcontrib>Zanella, Eduardo</creatorcontrib><creatorcontrib>Araujo, Michelle F.</creatorcontrib><creatorcontrib>Stambuk, Boris U.</creatorcontrib><creatorcontrib>da Costa, Aline C.</creatorcontrib><creatorcontrib>Ienczak, Jaciane L.</creatorcontrib><creatorcontrib>Furigo, Agenor</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Bioenergy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soares, Lauren B.</au><au>Santana, Marcel B.</au><au>da Silveira, Juliane M.</au><au>do Nascimento, Liana L.</au><au>de Meirelles, Mateus Y.</au><au>Henriques, Rosana O.</au><au>Zanella, Eduardo</au><au>Araujo, Michelle F.</au><au>Stambuk, Boris U.</au><au>da Costa, Aline C.</au><au>Ienczak, Jaciane L.</au><au>Furigo, Agenor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating the Production of Second-Generation Ethanol by Spathaspora passalidarum Immobilized on Sugarcane Bagasse</atitle><jtitle>Bioenergy research</jtitle><stitle>Bioenerg. Res</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>16</volume><issue>4</issue><spage>2022</spage><epage>2035</epage><pages>2022-2035</pages><issn>1939-1234</issn><eissn>1939-1242</eissn><abstract>Second-generation (2G) ethanol is obtained from the processing of lignocellulosic biomasses, such as sugarcane bagasse. However, several obstacles need to be overcome to make the industrial fermentation of the sugarcane bagasse hydrolysates viable, such as the time and capital expense of the process when compared with first-generation (1G) ethanol (produced by sugary and starchy raw materials), the inhibitors generated, and the process scaling-up. The intrinsic release of inhibitor compounds during the deconstruction of lignocellulosic material into sugars is one of the biggest challenges in the fermentation step. Cell immobilization can be used as a strategy to protect microorganisms from these inhibitory compounds. Immobilization can add costs to the process; therefore, the use of materials already available in the ethanol production is interesting from an economic point of view. In this sense, the objective of this study was to evaluate the immobilization of Spathaspora passalidarum in raw, alkaline, and acid-pretreated sugarcane bagasse. In addition, the fermentation of hemicellulosic hydrolysate (HH) from acid pretreatment of sugarcane bagasse was evaluated by immobilized and the free cells. Fermentation by S. passalidarum immobilized on sugarcane bagasse obtained growth and product yield factor of Y P/S (0.35 g/g) and Y X/S (0.43 g/g), respectively, against Y P/S (0.27 g/g) and Y X/S (0.086 g/g) for the cell-free assay. After 24 h of fermentation, it was possible to reach a productivity of 0.153 g/(L·h) and a yield of 68.37% with immobilized cells, which were also superior to the fermentation with free cells (0.148 g/(L·h) and 54%). Based on the results, it was possible to verify that sugarcane bagasse can be used not only as an effective source of carbon for the production of 2G ethanol, but also as a support for cell immobilization, increasing the productivity of the process.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12155-023-10634-2</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4106-6394</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1939-1234
ispartof Bioenergy research, 2023-12, Vol.16 (4), p.2022-2035
issn 1939-1234
1939-1242
language eng
recordid cdi_proquest_journals_2913780141
source SpringerNature Journals
subjects Acetaldehyde
Alcohol
Alcohol, Denatured
Bagasse
Biomedical and Life Sciences
Ethanol
Fermentation
Hydrolysates
Immobilization
Immobilized cells
Life Sciences
Lignocellulose
Microorganisms
Plant Breeding/Biotechnology
Plant Ecology
Plant Genetics and Genomics
Plant Sciences
Productivity
Raw materials
Spathaspora passalidarum
Sugarcane
Wood Science & Technology
title Evaluating the Production of Second-Generation Ethanol by Spathaspora passalidarum Immobilized on Sugarcane Bagasse
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T14%3A56%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20the%20Production%20of%20Second-Generation%20Ethanol%20by%20Spathaspora%20passalidarum%20Immobilized%20on%20Sugarcane%20Bagasse&rft.jtitle=Bioenergy%20research&rft.au=Soares,%20Lauren%20B.&rft.date=2023-12-01&rft.volume=16&rft.issue=4&rft.spage=2022&rft.epage=2035&rft.pages=2022-2035&rft.issn=1939-1234&rft.eissn=1939-1242&rft_id=info:doi/10.1007/s12155-023-10634-2&rft_dat=%3Cgale_proqu%3EA779343568%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2913780141&rft_id=info:pmid/&rft_galeid=A779343568&rfr_iscdi=true