Towards Autonomous Firefighting UAVs: Online Planners for Obstacle Avoidance and Payload Delivery

Drone technology is advancing rapidly and represents significant benefits during firefighting operations. This paper presents a novel approach for autonomous firefighting missions for Unmanned Aerial Vehicles (UAVs). The proposed UAV framework consists of a local planner module that finds an obstacl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent & robotic systems 2024-03, Vol.110 (1), p.10, Article 10
Hauptverfasser: Mugnai, Michael, Teppati Losè, Massimo, Satler, Massimo, Avizzano, Carlo Alberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 10
container_title Journal of intelligent & robotic systems
container_volume 110
creator Mugnai, Michael
Teppati Losè, Massimo
Satler, Massimo
Avizzano, Carlo Alberto
description Drone technology is advancing rapidly and represents significant benefits during firefighting operations. This paper presents a novel approach for autonomous firefighting missions for Unmanned Aerial Vehicles (UAVs). The proposed UAV framework consists of a local planner module that finds an obstacle-free path to guide the vehicle toward a target zone. After detecting the target point, the UAV plans an optimal trajectory to perform a precision ballistic launch of an extinguishing ball, exploiting its kinematics. The generated trajectory minimises the overall traversal time and the final state error while respecting UAV dynamic limits. The performance of the proposed system is evaluated both in simulations and real tests with randomly positioned obstacles and target locations. The proposed framework has been employed in the 2022 UAV Competition of the International Conference on Unmanned Aircraft Systems (ICUAS), where it successfully completed the mission in several runs of increasing difficulty, both in simulation and in real scenarios, achieving third place overall. A video attachment to this paper is available on the website https://www.youtube.com/watch?v=_hdxX2xXkVQ .
doi_str_mv 10.1007/s10846-023-02042-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2913779560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2913779560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-19f4a48f93a8df424e6fda4bc8799d993681b7812ed7293cfaea8957f6bdd4c53</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKt_wFPA82qSzW4Sb0u1KhTaQ-s1ZDdJ3bJNarKr9N8bXcGbh2EY5r03zAfANUa3GCF2FzHitMwQyVMhSjJ2Aia4YGmkSJyCCRIEp5Uoz8FFjDuEkOCFmAC19p8q6AiroffO7_0Q4bwNxrbbt751W7ipXuM9XLqudQauOuWcCRFaH-Cyjr1qOgOrD99q5RoDldNwpY6dVxo-mK79MOF4Cc6s6qK5-u1TsJk_rmfP2WL59DKrFlmTY9pnWFiqKLciV1xbSqgprVa0bjgTQguRlxzXjGNiNCMib6wyiouC2bLWmjZFPgU3Y-4h-PfBxF7u_BBcOimJwDljoihRUpFR1QQfY_pTHkK7V-EoMZLfKOWIUiaU8gelZMmUj6aYxG5rwl_0P64vKzl3Xw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2913779560</pqid></control><display><type>article</type><title>Towards Autonomous Firefighting UAVs: Online Planners for Obstacle Avoidance and Payload Delivery</title><source>Springer Nature OA Free Journals</source><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Mugnai, Michael ; Teppati Losè, Massimo ; Satler, Massimo ; Avizzano, Carlo Alberto</creator><creatorcontrib>Mugnai, Michael ; Teppati Losè, Massimo ; Satler, Massimo ; Avizzano, Carlo Alberto</creatorcontrib><description>Drone technology is advancing rapidly and represents significant benefits during firefighting operations. This paper presents a novel approach for autonomous firefighting missions for Unmanned Aerial Vehicles (UAVs). The proposed UAV framework consists of a local planner module that finds an obstacle-free path to guide the vehicle toward a target zone. After detecting the target point, the UAV plans an optimal trajectory to perform a precision ballistic launch of an extinguishing ball, exploiting its kinematics. The generated trajectory minimises the overall traversal time and the final state error while respecting UAV dynamic limits. The performance of the proposed system is evaluated both in simulations and real tests with randomly positioned obstacles and target locations. The proposed framework has been employed in the 2022 UAV Competition of the International Conference on Unmanned Aircraft Systems (ICUAS), where it successfully completed the mission in several runs of increasing difficulty, both in simulation and in real scenarios, achieving third place overall. A video attachment to this paper is available on the website https://www.youtube.com/watch?v=_hdxX2xXkVQ .</description><identifier>ISSN: 0921-0296</identifier><identifier>EISSN: 1573-0409</identifier><identifier>DOI: 10.1007/s10846-023-02042-7</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Artificial Intelligence ; Control ; Electrical Engineering ; Engineering ; Fire fighting ; Kinematics ; Mechanical Engineering ; Mechatronics ; Obstacle avoidance ; Regular Paper ; Robotics ; Target detection ; Trajectory optimization ; Unmanned aerial vehicles ; Unmanned aircraft</subject><ispartof>Journal of intelligent &amp; robotic systems, 2024-03, Vol.110 (1), p.10, Article 10</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-19f4a48f93a8df424e6fda4bc8799d993681b7812ed7293cfaea8957f6bdd4c53</cites><orcidid>0000-0001-5802-541X ; 0000-0002-1718-7719 ; 0000-0001-7983-6780 ; 0000-0001-6731-3114</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10846-023-02042-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10846-023-02042-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41120,41488,42189,42557,51319,51576</link.rule.ids></links><search><creatorcontrib>Mugnai, Michael</creatorcontrib><creatorcontrib>Teppati Losè, Massimo</creatorcontrib><creatorcontrib>Satler, Massimo</creatorcontrib><creatorcontrib>Avizzano, Carlo Alberto</creatorcontrib><title>Towards Autonomous Firefighting UAVs: Online Planners for Obstacle Avoidance and Payload Delivery</title><title>Journal of intelligent &amp; robotic systems</title><addtitle>J Intell Robot Syst</addtitle><description>Drone technology is advancing rapidly and represents significant benefits during firefighting operations. This paper presents a novel approach for autonomous firefighting missions for Unmanned Aerial Vehicles (UAVs). The proposed UAV framework consists of a local planner module that finds an obstacle-free path to guide the vehicle toward a target zone. After detecting the target point, the UAV plans an optimal trajectory to perform a precision ballistic launch of an extinguishing ball, exploiting its kinematics. The generated trajectory minimises the overall traversal time and the final state error while respecting UAV dynamic limits. The performance of the proposed system is evaluated both in simulations and real tests with randomly positioned obstacles and target locations. The proposed framework has been employed in the 2022 UAV Competition of the International Conference on Unmanned Aircraft Systems (ICUAS), where it successfully completed the mission in several runs of increasing difficulty, both in simulation and in real scenarios, achieving third place overall. A video attachment to this paper is available on the website https://www.youtube.com/watch?v=_hdxX2xXkVQ .</description><subject>Artificial Intelligence</subject><subject>Control</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Fire fighting</subject><subject>Kinematics</subject><subject>Mechanical Engineering</subject><subject>Mechatronics</subject><subject>Obstacle avoidance</subject><subject>Regular Paper</subject><subject>Robotics</subject><subject>Target detection</subject><subject>Trajectory optimization</subject><subject>Unmanned aerial vehicles</subject><subject>Unmanned aircraft</subject><issn>0921-0296</issn><issn>1573-0409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEFLAzEQhYMoWKt_wFPA82qSzW4Sb0u1KhTaQ-s1ZDdJ3bJNarKr9N8bXcGbh2EY5r03zAfANUa3GCF2FzHitMwQyVMhSjJ2Aia4YGmkSJyCCRIEp5Uoz8FFjDuEkOCFmAC19p8q6AiroffO7_0Q4bwNxrbbt751W7ipXuM9XLqudQauOuWcCRFaH-Cyjr1qOgOrD99q5RoDldNwpY6dVxo-mK79MOF4Cc6s6qK5-u1TsJk_rmfP2WL59DKrFlmTY9pnWFiqKLciV1xbSqgprVa0bjgTQguRlxzXjGNiNCMib6wyiouC2bLWmjZFPgU3Y-4h-PfBxF7u_BBcOimJwDljoihRUpFR1QQfY_pTHkK7V-EoMZLfKOWIUiaU8gelZMmUj6aYxG5rwl_0P64vKzl3Xw</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Mugnai, Michael</creator><creator>Teppati Losè, Massimo</creator><creator>Satler, Massimo</creator><creator>Avizzano, Carlo Alberto</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5802-541X</orcidid><orcidid>https://orcid.org/0000-0002-1718-7719</orcidid><orcidid>https://orcid.org/0000-0001-7983-6780</orcidid><orcidid>https://orcid.org/0000-0001-6731-3114</orcidid></search><sort><creationdate>20240301</creationdate><title>Towards Autonomous Firefighting UAVs: Online Planners for Obstacle Avoidance and Payload Delivery</title><author>Mugnai, Michael ; Teppati Losè, Massimo ; Satler, Massimo ; Avizzano, Carlo Alberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-19f4a48f93a8df424e6fda4bc8799d993681b7812ed7293cfaea8957f6bdd4c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence</topic><topic>Control</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Fire fighting</topic><topic>Kinematics</topic><topic>Mechanical Engineering</topic><topic>Mechatronics</topic><topic>Obstacle avoidance</topic><topic>Regular Paper</topic><topic>Robotics</topic><topic>Target detection</topic><topic>Trajectory optimization</topic><topic>Unmanned aerial vehicles</topic><topic>Unmanned aircraft</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mugnai, Michael</creatorcontrib><creatorcontrib>Teppati Losè, Massimo</creatorcontrib><creatorcontrib>Satler, Massimo</creatorcontrib><creatorcontrib>Avizzano, Carlo Alberto</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of intelligent &amp; robotic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mugnai, Michael</au><au>Teppati Losè, Massimo</au><au>Satler, Massimo</au><au>Avizzano, Carlo Alberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards Autonomous Firefighting UAVs: Online Planners for Obstacle Avoidance and Payload Delivery</atitle><jtitle>Journal of intelligent &amp; robotic systems</jtitle><stitle>J Intell Robot Syst</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>110</volume><issue>1</issue><spage>10</spage><pages>10-</pages><artnum>10</artnum><issn>0921-0296</issn><eissn>1573-0409</eissn><abstract>Drone technology is advancing rapidly and represents significant benefits during firefighting operations. This paper presents a novel approach for autonomous firefighting missions for Unmanned Aerial Vehicles (UAVs). The proposed UAV framework consists of a local planner module that finds an obstacle-free path to guide the vehicle toward a target zone. After detecting the target point, the UAV plans an optimal trajectory to perform a precision ballistic launch of an extinguishing ball, exploiting its kinematics. The generated trajectory minimises the overall traversal time and the final state error while respecting UAV dynamic limits. The performance of the proposed system is evaluated both in simulations and real tests with randomly positioned obstacles and target locations. The proposed framework has been employed in the 2022 UAV Competition of the International Conference on Unmanned Aircraft Systems (ICUAS), where it successfully completed the mission in several runs of increasing difficulty, both in simulation and in real scenarios, achieving third place overall. A video attachment to this paper is available on the website https://www.youtube.com/watch?v=_hdxX2xXkVQ .</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10846-023-02042-7</doi><orcidid>https://orcid.org/0000-0001-5802-541X</orcidid><orcidid>https://orcid.org/0000-0002-1718-7719</orcidid><orcidid>https://orcid.org/0000-0001-7983-6780</orcidid><orcidid>https://orcid.org/0000-0001-6731-3114</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0921-0296
ispartof Journal of intelligent & robotic systems, 2024-03, Vol.110 (1), p.10, Article 10
issn 0921-0296
1573-0409
language eng
recordid cdi_proquest_journals_2913779560
source Springer Nature OA Free Journals; Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Artificial Intelligence
Control
Electrical Engineering
Engineering
Fire fighting
Kinematics
Mechanical Engineering
Mechatronics
Obstacle avoidance
Regular Paper
Robotics
Target detection
Trajectory optimization
Unmanned aerial vehicles
Unmanned aircraft
title Towards Autonomous Firefighting UAVs: Online Planners for Obstacle Avoidance and Payload Delivery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A21%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20Autonomous%20Firefighting%20UAVs:%20Online%20Planners%20for%20Obstacle%20Avoidance%20and%20Payload%20Delivery&rft.jtitle=Journal%20of%20intelligent%20&%20robotic%20systems&rft.au=Mugnai,%20Michael&rft.date=2024-03-01&rft.volume=110&rft.issue=1&rft.spage=10&rft.pages=10-&rft.artnum=10&rft.issn=0921-0296&rft.eissn=1573-0409&rft_id=info:doi/10.1007/s10846-023-02042-7&rft_dat=%3Cproquest_cross%3E2913779560%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2913779560&rft_id=info:pmid/&rfr_iscdi=true