Towards Autonomous Firefighting UAVs: Online Planners for Obstacle Avoidance and Payload Delivery
Drone technology is advancing rapidly and represents significant benefits during firefighting operations. This paper presents a novel approach for autonomous firefighting missions for Unmanned Aerial Vehicles (UAVs). The proposed UAV framework consists of a local planner module that finds an obstacl...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent & robotic systems 2024-03, Vol.110 (1), p.10, Article 10 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 10 |
container_title | Journal of intelligent & robotic systems |
container_volume | 110 |
creator | Mugnai, Michael Teppati Losè, Massimo Satler, Massimo Avizzano, Carlo Alberto |
description | Drone technology is advancing rapidly and represents significant benefits during firefighting operations. This paper presents a novel approach for autonomous firefighting missions for Unmanned Aerial Vehicles (UAVs). The proposed UAV framework consists of a local planner module that finds an obstacle-free path to guide the vehicle toward a target zone. After detecting the target point, the UAV plans an optimal trajectory to perform a precision ballistic launch of an extinguishing ball, exploiting its kinematics. The generated trajectory minimises the overall traversal time and the final state error while respecting UAV dynamic limits. The performance of the proposed system is evaluated both in simulations and real tests with randomly positioned obstacles and target locations. The proposed framework has been employed in the 2022 UAV Competition of the International Conference on Unmanned Aircraft Systems (ICUAS), where it successfully completed the mission in several runs of increasing difficulty, both in simulation and in real scenarios, achieving third place overall. A video attachment to this paper is available on the website
https://www.youtube.com/watch?v=_hdxX2xXkVQ
. |
doi_str_mv | 10.1007/s10846-023-02042-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2913779560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2913779560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-19f4a48f93a8df424e6fda4bc8799d993681b7812ed7293cfaea8957f6bdd4c53</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKt_wFPA82qSzW4Sb0u1KhTaQ-s1ZDdJ3bJNarKr9N8bXcGbh2EY5r03zAfANUa3GCF2FzHitMwQyVMhSjJ2Aia4YGmkSJyCCRIEp5Uoz8FFjDuEkOCFmAC19p8q6AiroffO7_0Q4bwNxrbbt751W7ipXuM9XLqudQauOuWcCRFaH-Cyjr1qOgOrD99q5RoDldNwpY6dVxo-mK79MOF4Cc6s6qK5-u1TsJk_rmfP2WL59DKrFlmTY9pnWFiqKLciV1xbSqgprVa0bjgTQguRlxzXjGNiNCMib6wyiouC2bLWmjZFPgU3Y-4h-PfBxF7u_BBcOimJwDljoihRUpFR1QQfY_pTHkK7V-EoMZLfKOWIUiaU8gelZMmUj6aYxG5rwl_0P64vKzl3Xw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2913779560</pqid></control><display><type>article</type><title>Towards Autonomous Firefighting UAVs: Online Planners for Obstacle Avoidance and Payload Delivery</title><source>Springer Nature OA Free Journals</source><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Mugnai, Michael ; Teppati Losè, Massimo ; Satler, Massimo ; Avizzano, Carlo Alberto</creator><creatorcontrib>Mugnai, Michael ; Teppati Losè, Massimo ; Satler, Massimo ; Avizzano, Carlo Alberto</creatorcontrib><description>Drone technology is advancing rapidly and represents significant benefits during firefighting operations. This paper presents a novel approach for autonomous firefighting missions for Unmanned Aerial Vehicles (UAVs). The proposed UAV framework consists of a local planner module that finds an obstacle-free path to guide the vehicle toward a target zone. After detecting the target point, the UAV plans an optimal trajectory to perform a precision ballistic launch of an extinguishing ball, exploiting its kinematics. The generated trajectory minimises the overall traversal time and the final state error while respecting UAV dynamic limits. The performance of the proposed system is evaluated both in simulations and real tests with randomly positioned obstacles and target locations. The proposed framework has been employed in the 2022 UAV Competition of the International Conference on Unmanned Aircraft Systems (ICUAS), where it successfully completed the mission in several runs of increasing difficulty, both in simulation and in real scenarios, achieving third place overall. A video attachment to this paper is available on the website
https://www.youtube.com/watch?v=_hdxX2xXkVQ
.</description><identifier>ISSN: 0921-0296</identifier><identifier>EISSN: 1573-0409</identifier><identifier>DOI: 10.1007/s10846-023-02042-7</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Artificial Intelligence ; Control ; Electrical Engineering ; Engineering ; Fire fighting ; Kinematics ; Mechanical Engineering ; Mechatronics ; Obstacle avoidance ; Regular Paper ; Robotics ; Target detection ; Trajectory optimization ; Unmanned aerial vehicles ; Unmanned aircraft</subject><ispartof>Journal of intelligent & robotic systems, 2024-03, Vol.110 (1), p.10, Article 10</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-19f4a48f93a8df424e6fda4bc8799d993681b7812ed7293cfaea8957f6bdd4c53</cites><orcidid>0000-0001-5802-541X ; 0000-0002-1718-7719 ; 0000-0001-7983-6780 ; 0000-0001-6731-3114</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10846-023-02042-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10846-023-02042-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41120,41488,42189,42557,51319,51576</link.rule.ids></links><search><creatorcontrib>Mugnai, Michael</creatorcontrib><creatorcontrib>Teppati Losè, Massimo</creatorcontrib><creatorcontrib>Satler, Massimo</creatorcontrib><creatorcontrib>Avizzano, Carlo Alberto</creatorcontrib><title>Towards Autonomous Firefighting UAVs: Online Planners for Obstacle Avoidance and Payload Delivery</title><title>Journal of intelligent & robotic systems</title><addtitle>J Intell Robot Syst</addtitle><description>Drone technology is advancing rapidly and represents significant benefits during firefighting operations. This paper presents a novel approach for autonomous firefighting missions for Unmanned Aerial Vehicles (UAVs). The proposed UAV framework consists of a local planner module that finds an obstacle-free path to guide the vehicle toward a target zone. After detecting the target point, the UAV plans an optimal trajectory to perform a precision ballistic launch of an extinguishing ball, exploiting its kinematics. The generated trajectory minimises the overall traversal time and the final state error while respecting UAV dynamic limits. The performance of the proposed system is evaluated both in simulations and real tests with randomly positioned obstacles and target locations. The proposed framework has been employed in the 2022 UAV Competition of the International Conference on Unmanned Aircraft Systems (ICUAS), where it successfully completed the mission in several runs of increasing difficulty, both in simulation and in real scenarios, achieving third place overall. A video attachment to this paper is available on the website
https://www.youtube.com/watch?v=_hdxX2xXkVQ
.</description><subject>Artificial Intelligence</subject><subject>Control</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Fire fighting</subject><subject>Kinematics</subject><subject>Mechanical Engineering</subject><subject>Mechatronics</subject><subject>Obstacle avoidance</subject><subject>Regular Paper</subject><subject>Robotics</subject><subject>Target detection</subject><subject>Trajectory optimization</subject><subject>Unmanned aerial vehicles</subject><subject>Unmanned aircraft</subject><issn>0921-0296</issn><issn>1573-0409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEFLAzEQhYMoWKt_wFPA82qSzW4Sb0u1KhTaQ-s1ZDdJ3bJNarKr9N8bXcGbh2EY5r03zAfANUa3GCF2FzHitMwQyVMhSjJ2Aia4YGmkSJyCCRIEp5Uoz8FFjDuEkOCFmAC19p8q6AiroffO7_0Q4bwNxrbbt751W7ipXuM9XLqudQauOuWcCRFaH-Cyjr1qOgOrD99q5RoDldNwpY6dVxo-mK79MOF4Cc6s6qK5-u1TsJk_rmfP2WL59DKrFlmTY9pnWFiqKLciV1xbSqgprVa0bjgTQguRlxzXjGNiNCMib6wyiouC2bLWmjZFPgU3Y-4h-PfBxF7u_BBcOimJwDljoihRUpFR1QQfY_pTHkK7V-EoMZLfKOWIUiaU8gelZMmUj6aYxG5rwl_0P64vKzl3Xw</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Mugnai, Michael</creator><creator>Teppati Losè, Massimo</creator><creator>Satler, Massimo</creator><creator>Avizzano, Carlo Alberto</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5802-541X</orcidid><orcidid>https://orcid.org/0000-0002-1718-7719</orcidid><orcidid>https://orcid.org/0000-0001-7983-6780</orcidid><orcidid>https://orcid.org/0000-0001-6731-3114</orcidid></search><sort><creationdate>20240301</creationdate><title>Towards Autonomous Firefighting UAVs: Online Planners for Obstacle Avoidance and Payload Delivery</title><author>Mugnai, Michael ; Teppati Losè, Massimo ; Satler, Massimo ; Avizzano, Carlo Alberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-19f4a48f93a8df424e6fda4bc8799d993681b7812ed7293cfaea8957f6bdd4c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence</topic><topic>Control</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Fire fighting</topic><topic>Kinematics</topic><topic>Mechanical Engineering</topic><topic>Mechatronics</topic><topic>Obstacle avoidance</topic><topic>Regular Paper</topic><topic>Robotics</topic><topic>Target detection</topic><topic>Trajectory optimization</topic><topic>Unmanned aerial vehicles</topic><topic>Unmanned aircraft</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mugnai, Michael</creatorcontrib><creatorcontrib>Teppati Losè, Massimo</creatorcontrib><creatorcontrib>Satler, Massimo</creatorcontrib><creatorcontrib>Avizzano, Carlo Alberto</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of intelligent & robotic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mugnai, Michael</au><au>Teppati Losè, Massimo</au><au>Satler, Massimo</au><au>Avizzano, Carlo Alberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards Autonomous Firefighting UAVs: Online Planners for Obstacle Avoidance and Payload Delivery</atitle><jtitle>Journal of intelligent & robotic systems</jtitle><stitle>J Intell Robot Syst</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>110</volume><issue>1</issue><spage>10</spage><pages>10-</pages><artnum>10</artnum><issn>0921-0296</issn><eissn>1573-0409</eissn><abstract>Drone technology is advancing rapidly and represents significant benefits during firefighting operations. This paper presents a novel approach for autonomous firefighting missions for Unmanned Aerial Vehicles (UAVs). The proposed UAV framework consists of a local planner module that finds an obstacle-free path to guide the vehicle toward a target zone. After detecting the target point, the UAV plans an optimal trajectory to perform a precision ballistic launch of an extinguishing ball, exploiting its kinematics. The generated trajectory minimises the overall traversal time and the final state error while respecting UAV dynamic limits. The performance of the proposed system is evaluated both in simulations and real tests with randomly positioned obstacles and target locations. The proposed framework has been employed in the 2022 UAV Competition of the International Conference on Unmanned Aircraft Systems (ICUAS), where it successfully completed the mission in several runs of increasing difficulty, both in simulation and in real scenarios, achieving third place overall. A video attachment to this paper is available on the website
https://www.youtube.com/watch?v=_hdxX2xXkVQ
.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10846-023-02042-7</doi><orcidid>https://orcid.org/0000-0001-5802-541X</orcidid><orcidid>https://orcid.org/0000-0002-1718-7719</orcidid><orcidid>https://orcid.org/0000-0001-7983-6780</orcidid><orcidid>https://orcid.org/0000-0001-6731-3114</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-0296 |
ispartof | Journal of intelligent & robotic systems, 2024-03, Vol.110 (1), p.10, Article 10 |
issn | 0921-0296 1573-0409 |
language | eng |
recordid | cdi_proquest_journals_2913779560 |
source | Springer Nature OA Free Journals; Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Artificial Intelligence Control Electrical Engineering Engineering Fire fighting Kinematics Mechanical Engineering Mechatronics Obstacle avoidance Regular Paper Robotics Target detection Trajectory optimization Unmanned aerial vehicles Unmanned aircraft |
title | Towards Autonomous Firefighting UAVs: Online Planners for Obstacle Avoidance and Payload Delivery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A21%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20Autonomous%20Firefighting%20UAVs:%20Online%20Planners%20for%20Obstacle%20Avoidance%20and%20Payload%20Delivery&rft.jtitle=Journal%20of%20intelligent%20&%20robotic%20systems&rft.au=Mugnai,%20Michael&rft.date=2024-03-01&rft.volume=110&rft.issue=1&rft.spage=10&rft.pages=10-&rft.artnum=10&rft.issn=0921-0296&rft.eissn=1573-0409&rft_id=info:doi/10.1007/s10846-023-02042-7&rft_dat=%3Cproquest_cross%3E2913779560%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2913779560&rft_id=info:pmid/&rfr_iscdi=true |