Effect of sintering temperature on sol–gel synthesized NASICON-type Li1.3Al0.3Ti1.7(PO4)3 ceramic solid electrolyte
NASICON (Sodium (Na + ) Super-Ionic CONductor) type structured Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 (LATP) solid electrolyte with high lithium-ion conductivity was synthesized by sol–gel method. The structural, microstructural, and ionic conductivity studies were carried out using X-ray diffraction (XRD),...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in electronics 2024, Vol.35 (2), p.138, Article 138 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 138 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 35 |
creator | Deshpande, A. V. Bansod, Swati G. |
description | NASICON (Sodium (Na
+
) Super-Ionic CONductor) type structured Li
1.3
Al
0.3
Ti
1.7
(PO
4
)
3
(LATP) solid electrolyte with high lithium-ion conductivity was synthesized by sol–gel method. The structural, microstructural, and ionic conductivity studies were carried out using X-ray diffraction (XRD), scanning electron microscopy (SEM), and AC impedance spectroscopy, respectively. Infrared (IR) spectra have been studied to know the structural groups present in ceramic samples. The LATP sample sintered at 1000 °C for 1 h with a relative density of 95.52% exhibits the highest ionic conductivity of 0.9023 mS cm
−1
at 25 °C and lowest activation energy of 0.171 eV. The highest conductivity of this sample is mainly attributed to high density resulting in the good sintering capability of the studied ceramic electrolyte material. |
doi_str_mv | 10.1007/s10854-023-11766-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2913751633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2913751633</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-46e0abeb55c10b82888ae3a8eb5bb9ae5e17dc7b9d9c09725b3b8ecfd54d923e3</originalsourceid><addsrcrecordid>eNp9kMtKw0AUhgdRsFZfwNWAG11MnUsmM1mW4qVQWsEK7oZkclJT0iTOTBfpynfwDX0SUyu4c3UOh___DnwIXTI6YpSqW8-olhGhXBDGVByT3REaMKkEiTR_PUYDmkhFIsn5KTrzfk0pjSOhB2h7VxRgA24K7Ms6gCvrFQ6wacGlYesANzX2TfX18bmCCvuuDm_gyx3keD5-nk4WcxK6FvCsZCMxruhILPtNXT8tohuBbQ_ZlHYPKHMMVf_INVUX4BydFGnl4eJ3DtHL_d1y8khmi4fpZDwjVrAkkCgGmmaQSWkZzTTXWqcgUt1fsixJQQJTuVVZkieWJorLTGQabJHLKE-4ADFEVwdu65r3Lfhg1s3W1f1LwxMmlGSxEH2KH1LWNd47KEzryk3qOsOo2es1B72m12t-9JpdXxKHkm_3zsD9of9pfQNXUH8b</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2913751633</pqid></control><display><type>article</type><title>Effect of sintering temperature on sol–gel synthesized NASICON-type Li1.3Al0.3Ti1.7(PO4)3 ceramic solid electrolyte</title><source>SpringerLink Journals - AutoHoldings</source><creator>Deshpande, A. V. ; Bansod, Swati G.</creator><creatorcontrib>Deshpande, A. V. ; Bansod, Swati G.</creatorcontrib><description>NASICON (Sodium (Na
+
) Super-Ionic CONductor) type structured Li
1.3
Al
0.3
Ti
1.7
(PO
4
)
3
(LATP) solid electrolyte with high lithium-ion conductivity was synthesized by sol–gel method. The structural, microstructural, and ionic conductivity studies were carried out using X-ray diffraction (XRD), scanning electron microscopy (SEM), and AC impedance spectroscopy, respectively. Infrared (IR) spectra have been studied to know the structural groups present in ceramic samples. The LATP sample sintered at 1000 °C for 1 h with a relative density of 95.52% exhibits the highest ionic conductivity of 0.9023 mS cm
−1
at 25 °C and lowest activation energy of 0.171 eV. The highest conductivity of this sample is mainly attributed to high density resulting in the good sintering capability of the studied ceramic electrolyte material.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-023-11766-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aluminum ; Annealing ; Ceramics ; Characterization and Evaluation of Materials ; Chemical synthesis ; Chemistry and Materials Science ; Conductivity ; Electrolytes ; Grain size ; Infrared spectra ; Infrared spectroscopy ; Ion currents ; Lithium ; Lithium ions ; Materials Science ; Methods ; Nitrates ; Optical and Electronic Materials ; Phosphates ; Plasma sintering ; Sintering ; Sodium ; Sol-gel processes ; Solid electrolytes ; Specific gravity ; Spectrum analysis ; Temperature ; X-rays</subject><ispartof>Journal of materials science. Materials in electronics, 2024, Vol.35 (2), p.138, Article 138</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-46e0abeb55c10b82888ae3a8eb5bb9ae5e17dc7b9d9c09725b3b8ecfd54d923e3</citedby><cites>FETCH-LOGICAL-c319t-46e0abeb55c10b82888ae3a8eb5bb9ae5e17dc7b9d9c09725b3b8ecfd54d923e3</cites><orcidid>0000-0003-4830-2369</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-023-11766-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-023-11766-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Deshpande, A. V.</creatorcontrib><creatorcontrib>Bansod, Swati G.</creatorcontrib><title>Effect of sintering temperature on sol–gel synthesized NASICON-type Li1.3Al0.3Ti1.7(PO4)3 ceramic solid electrolyte</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>NASICON (Sodium (Na
+
) Super-Ionic CONductor) type structured Li
1.3
Al
0.3
Ti
1.7
(PO
4
)
3
(LATP) solid electrolyte with high lithium-ion conductivity was synthesized by sol–gel method. The structural, microstructural, and ionic conductivity studies were carried out using X-ray diffraction (XRD), scanning electron microscopy (SEM), and AC impedance spectroscopy, respectively. Infrared (IR) spectra have been studied to know the structural groups present in ceramic samples. The LATP sample sintered at 1000 °C for 1 h with a relative density of 95.52% exhibits the highest ionic conductivity of 0.9023 mS cm
−1
at 25 °C and lowest activation energy of 0.171 eV. The highest conductivity of this sample is mainly attributed to high density resulting in the good sintering capability of the studied ceramic electrolyte material.</description><subject>Aluminum</subject><subject>Annealing</subject><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical synthesis</subject><subject>Chemistry and Materials Science</subject><subject>Conductivity</subject><subject>Electrolytes</subject><subject>Grain size</subject><subject>Infrared spectra</subject><subject>Infrared spectroscopy</subject><subject>Ion currents</subject><subject>Lithium</subject><subject>Lithium ions</subject><subject>Materials Science</subject><subject>Methods</subject><subject>Nitrates</subject><subject>Optical and Electronic Materials</subject><subject>Phosphates</subject><subject>Plasma sintering</subject><subject>Sintering</subject><subject>Sodium</subject><subject>Sol-gel processes</subject><subject>Solid electrolytes</subject><subject>Specific gravity</subject><subject>Spectrum analysis</subject><subject>Temperature</subject><subject>X-rays</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMtKw0AUhgdRsFZfwNWAG11MnUsmM1mW4qVQWsEK7oZkclJT0iTOTBfpynfwDX0SUyu4c3UOh___DnwIXTI6YpSqW8-olhGhXBDGVByT3REaMKkEiTR_PUYDmkhFIsn5KTrzfk0pjSOhB2h7VxRgA24K7Ms6gCvrFQ6wacGlYesANzX2TfX18bmCCvuuDm_gyx3keD5-nk4WcxK6FvCsZCMxruhILPtNXT8tohuBbQ_ZlHYPKHMMVf_INVUX4BydFGnl4eJ3DtHL_d1y8khmi4fpZDwjVrAkkCgGmmaQSWkZzTTXWqcgUt1fsixJQQJTuVVZkieWJorLTGQabJHLKE-4ADFEVwdu65r3Lfhg1s3W1f1LwxMmlGSxEH2KH1LWNd47KEzryk3qOsOo2es1B72m12t-9JpdXxKHkm_3zsD9of9pfQNXUH8b</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Deshpande, A. V.</creator><creator>Bansod, Swati G.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-4830-2369</orcidid></search><sort><creationdate>2024</creationdate><title>Effect of sintering temperature on sol–gel synthesized NASICON-type Li1.3Al0.3Ti1.7(PO4)3 ceramic solid electrolyte</title><author>Deshpande, A. V. ; Bansod, Swati G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-46e0abeb55c10b82888ae3a8eb5bb9ae5e17dc7b9d9c09725b3b8ecfd54d923e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aluminum</topic><topic>Annealing</topic><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical synthesis</topic><topic>Chemistry and Materials Science</topic><topic>Conductivity</topic><topic>Electrolytes</topic><topic>Grain size</topic><topic>Infrared spectra</topic><topic>Infrared spectroscopy</topic><topic>Ion currents</topic><topic>Lithium</topic><topic>Lithium ions</topic><topic>Materials Science</topic><topic>Methods</topic><topic>Nitrates</topic><topic>Optical and Electronic Materials</topic><topic>Phosphates</topic><topic>Plasma sintering</topic><topic>Sintering</topic><topic>Sodium</topic><topic>Sol-gel processes</topic><topic>Solid electrolytes</topic><topic>Specific gravity</topic><topic>Spectrum analysis</topic><topic>Temperature</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deshpande, A. V.</creatorcontrib><creatorcontrib>Bansod, Swati G.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deshpande, A. V.</au><au>Bansod, Swati G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of sintering temperature on sol–gel synthesized NASICON-type Li1.3Al0.3Ti1.7(PO4)3 ceramic solid electrolyte</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2024</date><risdate>2024</risdate><volume>35</volume><issue>2</issue><spage>138</spage><pages>138-</pages><artnum>138</artnum><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>NASICON (Sodium (Na
+
) Super-Ionic CONductor) type structured Li
1.3
Al
0.3
Ti
1.7
(PO
4
)
3
(LATP) solid electrolyte with high lithium-ion conductivity was synthesized by sol–gel method. The structural, microstructural, and ionic conductivity studies were carried out using X-ray diffraction (XRD), scanning electron microscopy (SEM), and AC impedance spectroscopy, respectively. Infrared (IR) spectra have been studied to know the structural groups present in ceramic samples. The LATP sample sintered at 1000 °C for 1 h with a relative density of 95.52% exhibits the highest ionic conductivity of 0.9023 mS cm
−1
at 25 °C and lowest activation energy of 0.171 eV. The highest conductivity of this sample is mainly attributed to high density resulting in the good sintering capability of the studied ceramic electrolyte material.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-023-11766-z</doi><orcidid>https://orcid.org/0000-0003-4830-2369</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2024, Vol.35 (2), p.138, Article 138 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_2913751633 |
source | SpringerLink Journals - AutoHoldings |
subjects | Aluminum Annealing Ceramics Characterization and Evaluation of Materials Chemical synthesis Chemistry and Materials Science Conductivity Electrolytes Grain size Infrared spectra Infrared spectroscopy Ion currents Lithium Lithium ions Materials Science Methods Nitrates Optical and Electronic Materials Phosphates Plasma sintering Sintering Sodium Sol-gel processes Solid electrolytes Specific gravity Spectrum analysis Temperature X-rays |
title | Effect of sintering temperature on sol–gel synthesized NASICON-type Li1.3Al0.3Ti1.7(PO4)3 ceramic solid electrolyte |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T13%3A57%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20sintering%20temperature%20on%20sol%E2%80%93gel%20synthesized%20NASICON-type%20Li1.3Al0.3Ti1.7(PO4)3%20ceramic%20solid%20electrolyte&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Deshpande,%20A.%20V.&rft.date=2024&rft.volume=35&rft.issue=2&rft.spage=138&rft.pages=138-&rft.artnum=138&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-023-11766-z&rft_dat=%3Cproquest_cross%3E2913751633%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2913751633&rft_id=info:pmid/&rfr_iscdi=true |