Generalized Legendre Transform of Conformally Flat Metrics
In the calculus of variations, an important role is played by the Minkowski duality, or the Legendre transform of convex functions. We consider weakly regular, conformally flat Riemannian metrics of nonnegative curvature defined on the n -dimensional unit sphere. For this class of metrics, an analog...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2023-12, Vol.277 (5), p.760-769 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 769 |
---|---|
container_issue | 5 |
container_start_page | 760 |
container_title | Journal of mathematical sciences (New York, N.Y.) |
container_volume | 277 |
creator | Kurkina, M. V. Rodionov, E. D. Semenov, S. P. Slavsky, V. V. |
description | In the calculus of variations, an important role is played by the Minkowski duality, or the Legendre transform of convex functions. We consider weakly regular, conformally flat Riemannian metrics of nonnegative curvature defined on the
n
-dimensional unit sphere. For this class of metrics, an analog of the Legendre transformation is introduced and studied in detail. |
doi_str_mv | 10.1007/s10958-023-06884-2 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2913690043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A780929312</galeid><sourcerecordid>A780929312</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3242-85b7bf71911801e21b790aaa1b26216098766781c7778932f6ce6b034051b2c63</originalsourceid><addsrcrecordid>eNp9kVtLwzAUx4soOC9fwKeCTz5ET5I2F9_G8AYTwctzSLPT0tG1M-nA-enNrDAGQ_JwDoffLwnnnyQXFK4pgLwJFHSuCDBOQCiVEXaQjGguOVFS54exB8kI5zI7Tk5CmEOUhOKj5PYBW_S2qb9xlk6xwnbmMX33tg1l5xdpV6aTrt20tmnW6X1j-_QZe1-7cJYclbYJeP5XT5OP-7v3ySOZvjw8TcZT4jjLGFF5IYtSUk2pAoqMFlKDtZYWTDAqQCsphFTUSSmV5qwUDkUBPIM8Ik7w0-RyuHfpu88Vht7Mu5Vv45OGacqFBsj4lqpsg6aOX-69dYs6ODOWCjTTnLJIkT1UNeyga7Gs43iHv97DxzPDRe32Clc7QmR6_OoruwrBPL297rJsYJ3vQvBYmqWvF9avDQWzidUMsZoYq_mN1WwkPkghwm2FfruNf6wfCvWfgg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2913690043</pqid></control><display><type>article</type><title>Generalized Legendre Transform of Conformally Flat Metrics</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kurkina, M. V. ; Rodionov, E. D. ; Semenov, S. P. ; Slavsky, V. V.</creator><creatorcontrib>Kurkina, M. V. ; Rodionov, E. D. ; Semenov, S. P. ; Slavsky, V. V.</creatorcontrib><description>In the calculus of variations, an important role is played by the Minkowski duality, or the Legendre transform of convex functions. We consider weakly regular, conformally flat Riemannian metrics of nonnegative curvature defined on the
n
-dimensional unit sphere. For this class of metrics, an analog of the Legendre transformation is introduced and studied in detail.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-023-06884-2</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Calculus of variations ; Mathematical analysis ; Mathematics ; Mathematics and Statistics</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2023-12, Vol.277 (5), p.760-769</ispartof><rights>Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3242-85b7bf71911801e21b790aaa1b26216098766781c7778932f6ce6b034051b2c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-023-06884-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-023-06884-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kurkina, M. V.</creatorcontrib><creatorcontrib>Rodionov, E. D.</creatorcontrib><creatorcontrib>Semenov, S. P.</creatorcontrib><creatorcontrib>Slavsky, V. V.</creatorcontrib><title>Generalized Legendre Transform of Conformally Flat Metrics</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>In the calculus of variations, an important role is played by the Minkowski duality, or the Legendre transform of convex functions. We consider weakly regular, conformally flat Riemannian metrics of nonnegative curvature defined on the
n
-dimensional unit sphere. For this class of metrics, an analog of the Legendre transformation is introduced and studied in detail.</description><subject>Calculus of variations</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kVtLwzAUx4soOC9fwKeCTz5ET5I2F9_G8AYTwctzSLPT0tG1M-nA-enNrDAGQ_JwDoffLwnnnyQXFK4pgLwJFHSuCDBOQCiVEXaQjGguOVFS54exB8kI5zI7Tk5CmEOUhOKj5PYBW_S2qb9xlk6xwnbmMX33tg1l5xdpV6aTrt20tmnW6X1j-_QZe1-7cJYclbYJeP5XT5OP-7v3ySOZvjw8TcZT4jjLGFF5IYtSUk2pAoqMFlKDtZYWTDAqQCsphFTUSSmV5qwUDkUBPIM8Ik7w0-RyuHfpu88Vht7Mu5Vv45OGacqFBsj4lqpsg6aOX-69dYs6ODOWCjTTnLJIkT1UNeyga7Gs43iHv97DxzPDRe32Clc7QmR6_OoruwrBPL297rJsYJ3vQvBYmqWvF9avDQWzidUMsZoYq_mN1WwkPkghwm2FfruNf6wfCvWfgg</recordid><startdate>20231222</startdate><enddate>20231222</enddate><creator>Kurkina, M. V.</creator><creator>Rodionov, E. D.</creator><creator>Semenov, S. P.</creator><creator>Slavsky, V. V.</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20231222</creationdate><title>Generalized Legendre Transform of Conformally Flat Metrics</title><author>Kurkina, M. V. ; Rodionov, E. D. ; Semenov, S. P. ; Slavsky, V. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3242-85b7bf71911801e21b790aaa1b26216098766781c7778932f6ce6b034051b2c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Calculus of variations</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kurkina, M. V.</creatorcontrib><creatorcontrib>Rodionov, E. D.</creatorcontrib><creatorcontrib>Semenov, S. P.</creatorcontrib><creatorcontrib>Slavsky, V. V.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kurkina, M. V.</au><au>Rodionov, E. D.</au><au>Semenov, S. P.</au><au>Slavsky, V. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Legendre Transform of Conformally Flat Metrics</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2023-12-22</date><risdate>2023</risdate><volume>277</volume><issue>5</issue><spage>760</spage><epage>769</epage><pages>760-769</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>In the calculus of variations, an important role is played by the Minkowski duality, or the Legendre transform of convex functions. We consider weakly regular, conformally flat Riemannian metrics of nonnegative curvature defined on the
n
-dimensional unit sphere. For this class of metrics, an analog of the Legendre transformation is introduced and studied in detail.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10958-023-06884-2</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1072-3374 |
ispartof | Journal of mathematical sciences (New York, N.Y.), 2023-12, Vol.277 (5), p.760-769 |
issn | 1072-3374 1573-8795 |
language | eng |
recordid | cdi_proquest_journals_2913690043 |
source | SpringerLink Journals - AutoHoldings |
subjects | Calculus of variations Mathematical analysis Mathematics Mathematics and Statistics |
title | Generalized Legendre Transform of Conformally Flat Metrics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A33%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Legendre%20Transform%20of%20Conformally%20Flat%20Metrics&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Kurkina,%20M.%20V.&rft.date=2023-12-22&rft.volume=277&rft.issue=5&rft.spage=760&rft.epage=769&rft.pages=760-769&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-023-06884-2&rft_dat=%3Cgale_proqu%3EA780929312%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2913690043&rft_id=info:pmid/&rft_galeid=A780929312&rfr_iscdi=true |