Multi-view spectral clustering based on constrained Laplacian rank
The graph-based approach is a representative clustering method among multi-view clustering algorithms. However, it remains a challenge to quickly acquire complementary information in multi-view data and to execute effective clustering when the quality of the initially constructed data graph is inade...
Gespeichert in:
Veröffentlicht in: | Machine vision and applications 2024-03, Vol.35 (2), p.18, Article 18 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 18 |
container_title | Machine vision and applications |
container_volume | 35 |
creator | Song, Jinmei Liu, Baokai Yu, Yao Zhang, Kaiwu Du, Shiqiang |
description | The graph-based approach is a representative clustering method among multi-view clustering algorithms. However, it remains a challenge to quickly acquire complementary information in multi-view data and to execute effective clustering when the quality of the initially constructed data graph is inadequate. Therefore, we propose multi-view spectral clustering based on constrained Laplacian rank method, a new graph-based method (CLRSC). The following are our contributions: (1) Self-representation learning and CLR are extended to multi-view and they are connected into a unified framework to learn a common affinity matrix. (2) To achieve the overall optimization we construct a graph learning method based on constrained Laplacian rank and combine it with spectral clustering. (3) An iterative optimization-based procedure we designed and showed that our algorithm is convergent. Finally, sufficient experiments are carried out on 5 benchmark datasets. The experimental results on MSRC-v1 and BBCSport datasets show that the accuracy (ACC) of the method is 10.95% and 4.61% higher than the optimal comparison algorithm, respectively. |
doi_str_mv | 10.1007/s00138-023-01497-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2913577796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2913577796</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-34a284e6a60c78ec5bd2de361e529a84cfbd75738f96ddac82c6b500bf07af573</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Fz9HJR_Nx1EVXYcWLnkOaptK1pjVpXfz3Zq3gzdPM8L7vDPMgdE7gkgDIqwRAmMJAGQbCtcS7A7QgnFFMpNCHaAE69wo0PUYnKW0BgEvJF-jmcerGFn-2flekwbsx2q5w3ZRGH9vwWlQ2-broQ-H6kLLYhjxu7NBZ19pQRBveTtFRY7vkz37rEr3c3T6v7vHmaf2wut5gRyWMmHFLFffCCnBSeVdWNa09E8SXVFvFXVPVspRMNVrUtXWKOlGVAFUD0jZZWKKLee8Q-4_Jp9Fs-ymGfNJQTVgppdQiu-jscrFPKfrGDLF9t_HLEDB7VmZmZTIr88PK7HKIzaE07L_28W_1P6lv99NtYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2913577796</pqid></control><display><type>article</type><title>Multi-view spectral clustering based on constrained Laplacian rank</title><source>SpringerLink Journals - AutoHoldings</source><creator>Song, Jinmei ; Liu, Baokai ; Yu, Yao ; Zhang, Kaiwu ; Du, Shiqiang</creator><creatorcontrib>Song, Jinmei ; Liu, Baokai ; Yu, Yao ; Zhang, Kaiwu ; Du, Shiqiang</creatorcontrib><description>The graph-based approach is a representative clustering method among multi-view clustering algorithms. However, it remains a challenge to quickly acquire complementary information in multi-view data and to execute effective clustering when the quality of the initially constructed data graph is inadequate. Therefore, we propose multi-view spectral clustering based on constrained Laplacian rank method, a new graph-based method (CLRSC). The following are our contributions: (1) Self-representation learning and CLR are extended to multi-view and they are connected into a unified framework to learn a common affinity matrix. (2) To achieve the overall optimization we construct a graph learning method based on constrained Laplacian rank and combine it with spectral clustering. (3) An iterative optimization-based procedure we designed and showed that our algorithm is convergent. Finally, sufficient experiments are carried out on 5 benchmark datasets. The experimental results on MSRC-v1 and BBCSport datasets show that the accuracy (ACC) of the method is 10.95% and 4.61% higher than the optimal comparison algorithm, respectively.</description><identifier>ISSN: 0932-8092</identifier><identifier>EISSN: 1432-1769</identifier><identifier>DOI: 10.1007/s00138-023-01497-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Clustering ; Communications Engineering ; Computer Science ; Datasets ; Image Processing and Computer Vision ; Learning ; Networks ; Optimization ; Original Paper ; Pattern Recognition</subject><ispartof>Machine vision and applications, 2024-03, Vol.35 (2), p.18, Article 18</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-34a284e6a60c78ec5bd2de361e529a84cfbd75738f96ddac82c6b500bf07af573</cites><orcidid>0000-0003-0865-401X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00138-023-01497-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00138-023-01497-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Song, Jinmei</creatorcontrib><creatorcontrib>Liu, Baokai</creatorcontrib><creatorcontrib>Yu, Yao</creatorcontrib><creatorcontrib>Zhang, Kaiwu</creatorcontrib><creatorcontrib>Du, Shiqiang</creatorcontrib><title>Multi-view spectral clustering based on constrained Laplacian rank</title><title>Machine vision and applications</title><addtitle>Machine Vision and Applications</addtitle><description>The graph-based approach is a representative clustering method among multi-view clustering algorithms. However, it remains a challenge to quickly acquire complementary information in multi-view data and to execute effective clustering when the quality of the initially constructed data graph is inadequate. Therefore, we propose multi-view spectral clustering based on constrained Laplacian rank method, a new graph-based method (CLRSC). The following are our contributions: (1) Self-representation learning and CLR are extended to multi-view and they are connected into a unified framework to learn a common affinity matrix. (2) To achieve the overall optimization we construct a graph learning method based on constrained Laplacian rank and combine it with spectral clustering. (3) An iterative optimization-based procedure we designed and showed that our algorithm is convergent. Finally, sufficient experiments are carried out on 5 benchmark datasets. The experimental results on MSRC-v1 and BBCSport datasets show that the accuracy (ACC) of the method is 10.95% and 4.61% higher than the optimal comparison algorithm, respectively.</description><subject>Algorithms</subject><subject>Clustering</subject><subject>Communications Engineering</subject><subject>Computer Science</subject><subject>Datasets</subject><subject>Image Processing and Computer Vision</subject><subject>Learning</subject><subject>Networks</subject><subject>Optimization</subject><subject>Original Paper</subject><subject>Pattern Recognition</subject><issn>0932-8092</issn><issn>1432-1769</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8Fz9HJR_Nx1EVXYcWLnkOaptK1pjVpXfz3Zq3gzdPM8L7vDPMgdE7gkgDIqwRAmMJAGQbCtcS7A7QgnFFMpNCHaAE69wo0PUYnKW0BgEvJF-jmcerGFn-2flekwbsx2q5w3ZRGH9vwWlQ2-broQ-H6kLLYhjxu7NBZ19pQRBveTtFRY7vkz37rEr3c3T6v7vHmaf2wut5gRyWMmHFLFffCCnBSeVdWNa09E8SXVFvFXVPVspRMNVrUtXWKOlGVAFUD0jZZWKKLee8Q-4_Jp9Fs-ymGfNJQTVgppdQiu-jscrFPKfrGDLF9t_HLEDB7VmZmZTIr88PK7HKIzaE07L_28W_1P6lv99NtYg</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Song, Jinmei</creator><creator>Liu, Baokai</creator><creator>Yu, Yao</creator><creator>Zhang, Kaiwu</creator><creator>Du, Shiqiang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0865-401X</orcidid></search><sort><creationdate>20240301</creationdate><title>Multi-view spectral clustering based on constrained Laplacian rank</title><author>Song, Jinmei ; Liu, Baokai ; Yu, Yao ; Zhang, Kaiwu ; Du, Shiqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-34a284e6a60c78ec5bd2de361e529a84cfbd75738f96ddac82c6b500bf07af573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Clustering</topic><topic>Communications Engineering</topic><topic>Computer Science</topic><topic>Datasets</topic><topic>Image Processing and Computer Vision</topic><topic>Learning</topic><topic>Networks</topic><topic>Optimization</topic><topic>Original Paper</topic><topic>Pattern Recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Jinmei</creatorcontrib><creatorcontrib>Liu, Baokai</creatorcontrib><creatorcontrib>Yu, Yao</creatorcontrib><creatorcontrib>Zhang, Kaiwu</creatorcontrib><creatorcontrib>Du, Shiqiang</creatorcontrib><collection>CrossRef</collection><jtitle>Machine vision and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Jinmei</au><au>Liu, Baokai</au><au>Yu, Yao</au><au>Zhang, Kaiwu</au><au>Du, Shiqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-view spectral clustering based on constrained Laplacian rank</atitle><jtitle>Machine vision and applications</jtitle><stitle>Machine Vision and Applications</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>35</volume><issue>2</issue><spage>18</spage><pages>18-</pages><artnum>18</artnum><issn>0932-8092</issn><eissn>1432-1769</eissn><abstract>The graph-based approach is a representative clustering method among multi-view clustering algorithms. However, it remains a challenge to quickly acquire complementary information in multi-view data and to execute effective clustering when the quality of the initially constructed data graph is inadequate. Therefore, we propose multi-view spectral clustering based on constrained Laplacian rank method, a new graph-based method (CLRSC). The following are our contributions: (1) Self-representation learning and CLR are extended to multi-view and they are connected into a unified framework to learn a common affinity matrix. (2) To achieve the overall optimization we construct a graph learning method based on constrained Laplacian rank and combine it with spectral clustering. (3) An iterative optimization-based procedure we designed and showed that our algorithm is convergent. Finally, sufficient experiments are carried out on 5 benchmark datasets. The experimental results on MSRC-v1 and BBCSport datasets show that the accuracy (ACC) of the method is 10.95% and 4.61% higher than the optimal comparison algorithm, respectively.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00138-023-01497-w</doi><orcidid>https://orcid.org/0000-0003-0865-401X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0932-8092 |
ispartof | Machine vision and applications, 2024-03, Vol.35 (2), p.18, Article 18 |
issn | 0932-8092 1432-1769 |
language | eng |
recordid | cdi_proquest_journals_2913577796 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Clustering Communications Engineering Computer Science Datasets Image Processing and Computer Vision Learning Networks Optimization Original Paper Pattern Recognition |
title | Multi-view spectral clustering based on constrained Laplacian rank |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A44%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-view%20spectral%20clustering%20based%20on%20constrained%20Laplacian%20rank&rft.jtitle=Machine%20vision%20and%20applications&rft.au=Song,%20Jinmei&rft.date=2024-03-01&rft.volume=35&rft.issue=2&rft.spage=18&rft.pages=18-&rft.artnum=18&rft.issn=0932-8092&rft.eissn=1432-1769&rft_id=info:doi/10.1007/s00138-023-01497-w&rft_dat=%3Cproquest_cross%3E2913577796%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2913577796&rft_id=info:pmid/&rfr_iscdi=true |