(\mathcal{Z}\)-stability of crossed products by topological full groups
We introduce the property of having good subgroups for actions of countable discrete groups on compact metrizable spaces. We show that it implies comparison for actions of amenable groups and amenable actions of groups containing the free group on two generators. As a result, free actions on finite-...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-02 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Naryshkin, Petr Petrakos, Spyridon |
description | We introduce the property of having good subgroups for actions of countable discrete groups on compact metrizable spaces. We show that it implies comparison for actions of amenable groups and amenable actions of groups containing the free group on two generators. As a result, free actions on finite-dimensional spaces of topological full groups of many étale groupoids are almost finite whenever the group is amenable, or have comparison if instead it contains a free group on two generators and the action is minimal and amenable. In particular, free minimal actions give rise to classifiable crossed products in both of the above cases. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2913550479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2913550479</sourcerecordid><originalsourceid>FETCH-proquest_journals_29135504793</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRw14jJTSzJSE7MqY6qjdHULS5JTMrMySypVMhPU0guyi8uTk1RKCjKTylNLilWSKpUKMkvyM_JT88E6lBIK83JUUgvyi8tKOZhYE1LzClO5YXS3AzKbq4hzh66QL2FpanFJfFZ-aVFeUCpeCNLQ2NTUwMTc0tj4lQBAELRPEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2913550479</pqid></control><display><type>article</type><title>(\mathcal{Z}\)-stability of crossed products by topological full groups</title><source>Free E- Journals</source><creator>Naryshkin, Petr ; Petrakos, Spyridon</creator><creatorcontrib>Naryshkin, Petr ; Petrakos, Spyridon</creatorcontrib><description>We introduce the property of having good subgroups for actions of countable discrete groups on compact metrizable spaces. We show that it implies comparison for actions of amenable groups and amenable actions of groups containing the free group on two generators. As a result, free actions on finite-dimensional spaces of topological full groups of many étale groupoids are almost finite whenever the group is amenable, or have comparison if instead it contains a free group on two generators and the action is minimal and amenable. In particular, free minimal actions give rise to classifiable crossed products in both of the above cases.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Subgroups ; Topology</subject><ispartof>arXiv.org, 2024-02</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Naryshkin, Petr</creatorcontrib><creatorcontrib>Petrakos, Spyridon</creatorcontrib><title>(\mathcal{Z}\)-stability of crossed products by topological full groups</title><title>arXiv.org</title><description>We introduce the property of having good subgroups for actions of countable discrete groups on compact metrizable spaces. We show that it implies comparison for actions of amenable groups and amenable actions of groups containing the free group on two generators. As a result, free actions on finite-dimensional spaces of topological full groups of many étale groupoids are almost finite whenever the group is amenable, or have comparison if instead it contains a free group on two generators and the action is minimal and amenable. In particular, free minimal actions give rise to classifiable crossed products in both of the above cases.</description><subject>Subgroups</subject><subject>Topology</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRw14jJTSzJSE7MqY6qjdHULS5JTMrMySypVMhPU0guyi8uTk1RKCjKTylNLilWSKpUKMkvyM_JT88E6lBIK83JUUgvyi8tKOZhYE1LzClO5YXS3AzKbq4hzh66QL2FpanFJfFZ-aVFeUCpeCNLQ2NTUwMTc0tj4lQBAELRPEQ</recordid><startdate>20240212</startdate><enddate>20240212</enddate><creator>Naryshkin, Petr</creator><creator>Petrakos, Spyridon</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240212</creationdate><title>(\mathcal{Z}\)-stability of crossed products by topological full groups</title><author>Naryshkin, Petr ; Petrakos, Spyridon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29135504793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Subgroups</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Naryshkin, Petr</creatorcontrib><creatorcontrib>Petrakos, Spyridon</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naryshkin, Petr</au><au>Petrakos, Spyridon</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>(\mathcal{Z}\)-stability of crossed products by topological full groups</atitle><jtitle>arXiv.org</jtitle><date>2024-02-12</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We introduce the property of having good subgroups for actions of countable discrete groups on compact metrizable spaces. We show that it implies comparison for actions of amenable groups and amenable actions of groups containing the free group on two generators. As a result, free actions on finite-dimensional spaces of topological full groups of many étale groupoids are almost finite whenever the group is amenable, or have comparison if instead it contains a free group on two generators and the action is minimal and amenable. In particular, free minimal actions give rise to classifiable crossed products in both of the above cases.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2913550479 |
source | Free E- Journals |
subjects | Subgroups Topology |
title | (\mathcal{Z}\)-stability of crossed products by topological full groups |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T14%3A56%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=(%5Cmathcal%7BZ%7D%5C)-stability%20of%20crossed%20products%20by%20topological%20full%20groups&rft.jtitle=arXiv.org&rft.au=Naryshkin,%20Petr&rft.date=2024-02-12&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2913550479%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2913550479&rft_id=info:pmid/&rfr_iscdi=true |