(\mathcal{Z}\)-stability of crossed products by topological full groups

We introduce the property of having good subgroups for actions of countable discrete groups on compact metrizable spaces. We show that it implies comparison for actions of amenable groups and amenable actions of groups containing the free group on two generators. As a result, free actions on finite-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-02
Hauptverfasser: Naryshkin, Petr, Petrakos, Spyridon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Naryshkin, Petr
Petrakos, Spyridon
description We introduce the property of having good subgroups for actions of countable discrete groups on compact metrizable spaces. We show that it implies comparison for actions of amenable groups and amenable actions of groups containing the free group on two generators. As a result, free actions on finite-dimensional spaces of topological full groups of many étale groupoids are almost finite whenever the group is amenable, or have comparison if instead it contains a free group on two generators and the action is minimal and amenable. In particular, free minimal actions give rise to classifiable crossed products in both of the above cases.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2913550479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2913550479</sourcerecordid><originalsourceid>FETCH-proquest_journals_29135504793</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRw14jJTSzJSE7MqY6qjdHULS5JTMrMySypVMhPU0guyi8uTk1RKCjKTylNLilWSKpUKMkvyM_JT88E6lBIK83JUUgvyi8tKOZhYE1LzClO5YXS3AzKbq4hzh66QL2FpanFJfFZ-aVFeUCpeCNLQ2NTUwMTc0tj4lQBAELRPEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2913550479</pqid></control><display><type>article</type><title>(\mathcal{Z}\)-stability of crossed products by topological full groups</title><source>Free E- Journals</source><creator>Naryshkin, Petr ; Petrakos, Spyridon</creator><creatorcontrib>Naryshkin, Petr ; Petrakos, Spyridon</creatorcontrib><description>We introduce the property of having good subgroups for actions of countable discrete groups on compact metrizable spaces. We show that it implies comparison for actions of amenable groups and amenable actions of groups containing the free group on two generators. As a result, free actions on finite-dimensional spaces of topological full groups of many étale groupoids are almost finite whenever the group is amenable, or have comparison if instead it contains a free group on two generators and the action is minimal and amenable. In particular, free minimal actions give rise to classifiable crossed products in both of the above cases.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Subgroups ; Topology</subject><ispartof>arXiv.org, 2024-02</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Naryshkin, Petr</creatorcontrib><creatorcontrib>Petrakos, Spyridon</creatorcontrib><title>(\mathcal{Z}\)-stability of crossed products by topological full groups</title><title>arXiv.org</title><description>We introduce the property of having good subgroups for actions of countable discrete groups on compact metrizable spaces. We show that it implies comparison for actions of amenable groups and amenable actions of groups containing the free group on two generators. As a result, free actions on finite-dimensional spaces of topological full groups of many étale groupoids are almost finite whenever the group is amenable, or have comparison if instead it contains a free group on two generators and the action is minimal and amenable. In particular, free minimal actions give rise to classifiable crossed products in both of the above cases.</description><subject>Subgroups</subject><subject>Topology</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRw14jJTSzJSE7MqY6qjdHULS5JTMrMySypVMhPU0guyi8uTk1RKCjKTylNLilWSKpUKMkvyM_JT88E6lBIK83JUUgvyi8tKOZhYE1LzClO5YXS3AzKbq4hzh66QL2FpanFJfFZ-aVFeUCpeCNLQ2NTUwMTc0tj4lQBAELRPEQ</recordid><startdate>20240212</startdate><enddate>20240212</enddate><creator>Naryshkin, Petr</creator><creator>Petrakos, Spyridon</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240212</creationdate><title>(\mathcal{Z}\)-stability of crossed products by topological full groups</title><author>Naryshkin, Petr ; Petrakos, Spyridon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29135504793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Subgroups</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Naryshkin, Petr</creatorcontrib><creatorcontrib>Petrakos, Spyridon</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naryshkin, Petr</au><au>Petrakos, Spyridon</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>(\mathcal{Z}\)-stability of crossed products by topological full groups</atitle><jtitle>arXiv.org</jtitle><date>2024-02-12</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We introduce the property of having good subgroups for actions of countable discrete groups on compact metrizable spaces. We show that it implies comparison for actions of amenable groups and amenable actions of groups containing the free group on two generators. As a result, free actions on finite-dimensional spaces of topological full groups of many étale groupoids are almost finite whenever the group is amenable, or have comparison if instead it contains a free group on two generators and the action is minimal and amenable. In particular, free minimal actions give rise to classifiable crossed products in both of the above cases.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2913550479
source Free E- Journals
subjects Subgroups
Topology
title (\mathcal{Z}\)-stability of crossed products by topological full groups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T14%3A56%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=(%5Cmathcal%7BZ%7D%5C)-stability%20of%20crossed%20products%20by%20topological%20full%20groups&rft.jtitle=arXiv.org&rft.au=Naryshkin,%20Petr&rft.date=2024-02-12&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2913550479%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2913550479&rft_id=info:pmid/&rfr_iscdi=true