The impact of generative artificial intelligence on socioeconomic inequalities and policy making

Generative artificial intelligence has the potential to both exacerbate and ameliorate existing socioeconomic inequalities. In this article, we provide a state-of-the-art interdisciplinary overview of the potential impacts of generative AI on (mis)information and three information-intensive domains:...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-05
Hauptverfasser: Capraro, Valerio, Lentsch, Austin, Acemoglu, Daron, Akgun, Selin, Akhmedova, Aisel, Bilancini, Ennio, Jean-François Bonnefon, Brañas-Garza, Pablo, Butera, Luigi, Douglas, Karen M, Everett, Jim A C, Gigerenzer, Gerd, Greenhow, Christine, Hashimoto, Daniel A, Holt-Lunstad, Julianne, Jetten, Jolanda, Johnson, Simon, Longoni, Chiara, Lunn, Pete, Natale, Simone, Rahwan, Iyad, Selwyn, Neil, Singh, Vivek, Suri, Siddharth, Sutcliffe, Jennifer, Tomlinson, Joe, van der Linden, Sander, Paul A M Van Lange, Wall, Friederike, Van Bavel, Jay J, Viale, Riccardo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Capraro, Valerio
Lentsch, Austin
Acemoglu, Daron
Akgun, Selin
Akhmedova, Aisel
Bilancini, Ennio
Jean-François Bonnefon
Brañas-Garza, Pablo
Butera, Luigi
Douglas, Karen M
Everett, Jim A C
Gigerenzer, Gerd
Greenhow, Christine
Hashimoto, Daniel A
Holt-Lunstad, Julianne
Jetten, Jolanda
Johnson, Simon
Longoni, Chiara
Lunn, Pete
Natale, Simone
Rahwan, Iyad
Selwyn, Neil
Singh, Vivek
Suri, Siddharth
Sutcliffe, Jennifer
Tomlinson, Joe
van der Linden, Sander
Paul A M Van Lange
Wall, Friederike
Van Bavel, Jay J
Viale, Riccardo
description Generative artificial intelligence has the potential to both exacerbate and ameliorate existing socioeconomic inequalities. In this article, we provide a state-of-the-art interdisciplinary overview of the potential impacts of generative AI on (mis)information and three information-intensive domains: work, education, and healthcare. Our goal is to highlight how generative AI could worsen existing inequalities while illuminating how AI may help mitigate pervasive social problems. In the information domain, generative AI can democratize content creation and access, but may dramatically expand the production and proliferation of misinformation. In the workplace, it can boost productivity and create new jobs, but the benefits will likely be distributed unevenly. In education, it offers personalized learning, but may widen the digital divide. In healthcare, it might improve diagnostics and accessibility, but could deepen pre-existing inequalities. In each section we cover a specific topic, evaluate existing research, identify critical gaps, and recommend research directions, including explicit trade-offs that complicate the derivation of a priori hypotheses. We conclude with a section highlighting the role of policymaking to maximize generative AI's potential to reduce inequalities while mitigating its harmful effects. We discuss strengths and weaknesses of existing policy frameworks in the European Union, the United States, and the United Kingdom, observing that each fails to fully confront the socioeconomic challenges we have identified. We propose several concrete policies that could promote shared prosperity through the advancement of generative AI. This article emphasizes the need for interdisciplinary collaborations to understand and address the complex challenges of generative AI.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2913534127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2913534127</sourcerecordid><originalsourceid>FETCH-proquest_journals_29135341273</originalsourceid><addsrcrecordid>eNqNykEOgjAQQNHGxESi3GES1yTQgujaaDwAe2zqgIOlA7SYeHtZeABXf_H-SkRSqSw55lJuROx9l6apPJSyKFQk7tUTgfpBmwDcQIsOJx3ojaCnQA0Z0hbIBbSWFjQI7MCzIUbDjnsyi-I4a0uB0IN2DxjYkvlAr1_k2p1YN9p6jH_div31Up1vyTDxOKMPdcfz5Baq5SlThcozWar_ri9hCkXG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2913534127</pqid></control><display><type>article</type><title>The impact of generative artificial intelligence on socioeconomic inequalities and policy making</title><source>Freely Accessible Journals</source><creator>Capraro, Valerio ; Lentsch, Austin ; Acemoglu, Daron ; Akgun, Selin ; Akhmedova, Aisel ; Bilancini, Ennio ; Jean-François Bonnefon ; Brañas-Garza, Pablo ; Butera, Luigi ; Douglas, Karen M ; Everett, Jim A C ; Gigerenzer, Gerd ; Greenhow, Christine ; Hashimoto, Daniel A ; Holt-Lunstad, Julianne ; Jetten, Jolanda ; Johnson, Simon ; Longoni, Chiara ; Lunn, Pete ; Natale, Simone ; Rahwan, Iyad ; Selwyn, Neil ; Singh, Vivek ; Suri, Siddharth ; Sutcliffe, Jennifer ; Tomlinson, Joe ; van der Linden, Sander ; Paul A M Van Lange ; Wall, Friederike ; Van Bavel, Jay J ; Viale, Riccardo</creator><creatorcontrib>Capraro, Valerio ; Lentsch, Austin ; Acemoglu, Daron ; Akgun, Selin ; Akhmedova, Aisel ; Bilancini, Ennio ; Jean-François Bonnefon ; Brañas-Garza, Pablo ; Butera, Luigi ; Douglas, Karen M ; Everett, Jim A C ; Gigerenzer, Gerd ; Greenhow, Christine ; Hashimoto, Daniel A ; Holt-Lunstad, Julianne ; Jetten, Jolanda ; Johnson, Simon ; Longoni, Chiara ; Lunn, Pete ; Natale, Simone ; Rahwan, Iyad ; Selwyn, Neil ; Singh, Vivek ; Suri, Siddharth ; Sutcliffe, Jennifer ; Tomlinson, Joe ; van der Linden, Sander ; Paul A M Van Lange ; Wall, Friederike ; Van Bavel, Jay J ; Viale, Riccardo</creatorcontrib><description>Generative artificial intelligence has the potential to both exacerbate and ameliorate existing socioeconomic inequalities. In this article, we provide a state-of-the-art interdisciplinary overview of the potential impacts of generative AI on (mis)information and three information-intensive domains: work, education, and healthcare. Our goal is to highlight how generative AI could worsen existing inequalities while illuminating how AI may help mitigate pervasive social problems. In the information domain, generative AI can democratize content creation and access, but may dramatically expand the production and proliferation of misinformation. In the workplace, it can boost productivity and create new jobs, but the benefits will likely be distributed unevenly. In education, it offers personalized learning, but may widen the digital divide. In healthcare, it might improve diagnostics and accessibility, but could deepen pre-existing inequalities. In each section we cover a specific topic, evaluate existing research, identify critical gaps, and recommend research directions, including explicit trade-offs that complicate the derivation of a priori hypotheses. We conclude with a section highlighting the role of policymaking to maximize generative AI's potential to reduce inequalities while mitigating its harmful effects. We discuss strengths and weaknesses of existing policy frameworks in the European Union, the United States, and the United Kingdom, observing that each fails to fully confront the socioeconomic challenges we have identified. We propose several concrete policies that could promote shared prosperity through the advancement of generative AI. This article emphasizes the need for interdisciplinary collaborations to understand and address the complex challenges of generative AI.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Chatbots ; Education ; Generative artificial intelligence ; Interdisciplinary aspects ; Policies ; State-of-the-art reviews</subject><ispartof>arXiv.org, 2024-05</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Capraro, Valerio</creatorcontrib><creatorcontrib>Lentsch, Austin</creatorcontrib><creatorcontrib>Acemoglu, Daron</creatorcontrib><creatorcontrib>Akgun, Selin</creatorcontrib><creatorcontrib>Akhmedova, Aisel</creatorcontrib><creatorcontrib>Bilancini, Ennio</creatorcontrib><creatorcontrib>Jean-François Bonnefon</creatorcontrib><creatorcontrib>Brañas-Garza, Pablo</creatorcontrib><creatorcontrib>Butera, Luigi</creatorcontrib><creatorcontrib>Douglas, Karen M</creatorcontrib><creatorcontrib>Everett, Jim A C</creatorcontrib><creatorcontrib>Gigerenzer, Gerd</creatorcontrib><creatorcontrib>Greenhow, Christine</creatorcontrib><creatorcontrib>Hashimoto, Daniel A</creatorcontrib><creatorcontrib>Holt-Lunstad, Julianne</creatorcontrib><creatorcontrib>Jetten, Jolanda</creatorcontrib><creatorcontrib>Johnson, Simon</creatorcontrib><creatorcontrib>Longoni, Chiara</creatorcontrib><creatorcontrib>Lunn, Pete</creatorcontrib><creatorcontrib>Natale, Simone</creatorcontrib><creatorcontrib>Rahwan, Iyad</creatorcontrib><creatorcontrib>Selwyn, Neil</creatorcontrib><creatorcontrib>Singh, Vivek</creatorcontrib><creatorcontrib>Suri, Siddharth</creatorcontrib><creatorcontrib>Sutcliffe, Jennifer</creatorcontrib><creatorcontrib>Tomlinson, Joe</creatorcontrib><creatorcontrib>van der Linden, Sander</creatorcontrib><creatorcontrib>Paul A M Van Lange</creatorcontrib><creatorcontrib>Wall, Friederike</creatorcontrib><creatorcontrib>Van Bavel, Jay J</creatorcontrib><creatorcontrib>Viale, Riccardo</creatorcontrib><title>The impact of generative artificial intelligence on socioeconomic inequalities and policy making</title><title>arXiv.org</title><description>Generative artificial intelligence has the potential to both exacerbate and ameliorate existing socioeconomic inequalities. In this article, we provide a state-of-the-art interdisciplinary overview of the potential impacts of generative AI on (mis)information and three information-intensive domains: work, education, and healthcare. Our goal is to highlight how generative AI could worsen existing inequalities while illuminating how AI may help mitigate pervasive social problems. In the information domain, generative AI can democratize content creation and access, but may dramatically expand the production and proliferation of misinformation. In the workplace, it can boost productivity and create new jobs, but the benefits will likely be distributed unevenly. In education, it offers personalized learning, but may widen the digital divide. In healthcare, it might improve diagnostics and accessibility, but could deepen pre-existing inequalities. In each section we cover a specific topic, evaluate existing research, identify critical gaps, and recommend research directions, including explicit trade-offs that complicate the derivation of a priori hypotheses. We conclude with a section highlighting the role of policymaking to maximize generative AI's potential to reduce inequalities while mitigating its harmful effects. We discuss strengths and weaknesses of existing policy frameworks in the European Union, the United States, and the United Kingdom, observing that each fails to fully confront the socioeconomic challenges we have identified. We propose several concrete policies that could promote shared prosperity through the advancement of generative AI. This article emphasizes the need for interdisciplinary collaborations to understand and address the complex challenges of generative AI.</description><subject>Chatbots</subject><subject>Education</subject><subject>Generative artificial intelligence</subject><subject>Interdisciplinary aspects</subject><subject>Policies</subject><subject>State-of-the-art reviews</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNykEOgjAQQNHGxESi3GES1yTQgujaaDwAe2zqgIOlA7SYeHtZeABXf_H-SkRSqSw55lJuROx9l6apPJSyKFQk7tUTgfpBmwDcQIsOJx3ojaCnQA0Z0hbIBbSWFjQI7MCzIUbDjnsyi-I4a0uB0IN2DxjYkvlAr1_k2p1YN9p6jH_div31Up1vyTDxOKMPdcfz5Baq5SlThcozWar_ri9hCkXG</recordid><startdate>20240506</startdate><enddate>20240506</enddate><creator>Capraro, Valerio</creator><creator>Lentsch, Austin</creator><creator>Acemoglu, Daron</creator><creator>Akgun, Selin</creator><creator>Akhmedova, Aisel</creator><creator>Bilancini, Ennio</creator><creator>Jean-François Bonnefon</creator><creator>Brañas-Garza, Pablo</creator><creator>Butera, Luigi</creator><creator>Douglas, Karen M</creator><creator>Everett, Jim A C</creator><creator>Gigerenzer, Gerd</creator><creator>Greenhow, Christine</creator><creator>Hashimoto, Daniel A</creator><creator>Holt-Lunstad, Julianne</creator><creator>Jetten, Jolanda</creator><creator>Johnson, Simon</creator><creator>Longoni, Chiara</creator><creator>Lunn, Pete</creator><creator>Natale, Simone</creator><creator>Rahwan, Iyad</creator><creator>Selwyn, Neil</creator><creator>Singh, Vivek</creator><creator>Suri, Siddharth</creator><creator>Sutcliffe, Jennifer</creator><creator>Tomlinson, Joe</creator><creator>van der Linden, Sander</creator><creator>Paul A M Van Lange</creator><creator>Wall, Friederike</creator><creator>Van Bavel, Jay J</creator><creator>Viale, Riccardo</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240506</creationdate><title>The impact of generative artificial intelligence on socioeconomic inequalities and policy making</title><author>Capraro, Valerio ; Lentsch, Austin ; Acemoglu, Daron ; Akgun, Selin ; Akhmedova, Aisel ; Bilancini, Ennio ; Jean-François Bonnefon ; Brañas-Garza, Pablo ; Butera, Luigi ; Douglas, Karen M ; Everett, Jim A C ; Gigerenzer, Gerd ; Greenhow, Christine ; Hashimoto, Daniel A ; Holt-Lunstad, Julianne ; Jetten, Jolanda ; Johnson, Simon ; Longoni, Chiara ; Lunn, Pete ; Natale, Simone ; Rahwan, Iyad ; Selwyn, Neil ; Singh, Vivek ; Suri, Siddharth ; Sutcliffe, Jennifer ; Tomlinson, Joe ; van der Linden, Sander ; Paul A M Van Lange ; Wall, Friederike ; Van Bavel, Jay J ; Viale, Riccardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29135341273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chatbots</topic><topic>Education</topic><topic>Generative artificial intelligence</topic><topic>Interdisciplinary aspects</topic><topic>Policies</topic><topic>State-of-the-art reviews</topic><toplevel>online_resources</toplevel><creatorcontrib>Capraro, Valerio</creatorcontrib><creatorcontrib>Lentsch, Austin</creatorcontrib><creatorcontrib>Acemoglu, Daron</creatorcontrib><creatorcontrib>Akgun, Selin</creatorcontrib><creatorcontrib>Akhmedova, Aisel</creatorcontrib><creatorcontrib>Bilancini, Ennio</creatorcontrib><creatorcontrib>Jean-François Bonnefon</creatorcontrib><creatorcontrib>Brañas-Garza, Pablo</creatorcontrib><creatorcontrib>Butera, Luigi</creatorcontrib><creatorcontrib>Douglas, Karen M</creatorcontrib><creatorcontrib>Everett, Jim A C</creatorcontrib><creatorcontrib>Gigerenzer, Gerd</creatorcontrib><creatorcontrib>Greenhow, Christine</creatorcontrib><creatorcontrib>Hashimoto, Daniel A</creatorcontrib><creatorcontrib>Holt-Lunstad, Julianne</creatorcontrib><creatorcontrib>Jetten, Jolanda</creatorcontrib><creatorcontrib>Johnson, Simon</creatorcontrib><creatorcontrib>Longoni, Chiara</creatorcontrib><creatorcontrib>Lunn, Pete</creatorcontrib><creatorcontrib>Natale, Simone</creatorcontrib><creatorcontrib>Rahwan, Iyad</creatorcontrib><creatorcontrib>Selwyn, Neil</creatorcontrib><creatorcontrib>Singh, Vivek</creatorcontrib><creatorcontrib>Suri, Siddharth</creatorcontrib><creatorcontrib>Sutcliffe, Jennifer</creatorcontrib><creatorcontrib>Tomlinson, Joe</creatorcontrib><creatorcontrib>van der Linden, Sander</creatorcontrib><creatorcontrib>Paul A M Van Lange</creatorcontrib><creatorcontrib>Wall, Friederike</creatorcontrib><creatorcontrib>Van Bavel, Jay J</creatorcontrib><creatorcontrib>Viale, Riccardo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Capraro, Valerio</au><au>Lentsch, Austin</au><au>Acemoglu, Daron</au><au>Akgun, Selin</au><au>Akhmedova, Aisel</au><au>Bilancini, Ennio</au><au>Jean-François Bonnefon</au><au>Brañas-Garza, Pablo</au><au>Butera, Luigi</au><au>Douglas, Karen M</au><au>Everett, Jim A C</au><au>Gigerenzer, Gerd</au><au>Greenhow, Christine</au><au>Hashimoto, Daniel A</au><au>Holt-Lunstad, Julianne</au><au>Jetten, Jolanda</au><au>Johnson, Simon</au><au>Longoni, Chiara</au><au>Lunn, Pete</au><au>Natale, Simone</au><au>Rahwan, Iyad</au><au>Selwyn, Neil</au><au>Singh, Vivek</au><au>Suri, Siddharth</au><au>Sutcliffe, Jennifer</au><au>Tomlinson, Joe</au><au>van der Linden, Sander</au><au>Paul A M Van Lange</au><au>Wall, Friederike</au><au>Van Bavel, Jay J</au><au>Viale, Riccardo</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The impact of generative artificial intelligence on socioeconomic inequalities and policy making</atitle><jtitle>arXiv.org</jtitle><date>2024-05-06</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Generative artificial intelligence has the potential to both exacerbate and ameliorate existing socioeconomic inequalities. In this article, we provide a state-of-the-art interdisciplinary overview of the potential impacts of generative AI on (mis)information and three information-intensive domains: work, education, and healthcare. Our goal is to highlight how generative AI could worsen existing inequalities while illuminating how AI may help mitigate pervasive social problems. In the information domain, generative AI can democratize content creation and access, but may dramatically expand the production and proliferation of misinformation. In the workplace, it can boost productivity and create new jobs, but the benefits will likely be distributed unevenly. In education, it offers personalized learning, but may widen the digital divide. In healthcare, it might improve diagnostics and accessibility, but could deepen pre-existing inequalities. In each section we cover a specific topic, evaluate existing research, identify critical gaps, and recommend research directions, including explicit trade-offs that complicate the derivation of a priori hypotheses. We conclude with a section highlighting the role of policymaking to maximize generative AI's potential to reduce inequalities while mitigating its harmful effects. We discuss strengths and weaknesses of existing policy frameworks in the European Union, the United States, and the United Kingdom, observing that each fails to fully confront the socioeconomic challenges we have identified. We propose several concrete policies that could promote shared prosperity through the advancement of generative AI. This article emphasizes the need for interdisciplinary collaborations to understand and address the complex challenges of generative AI.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2913534127
source Freely Accessible Journals
subjects Chatbots
Education
Generative artificial intelligence
Interdisciplinary aspects
Policies
State-of-the-art reviews
title The impact of generative artificial intelligence on socioeconomic inequalities and policy making
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T03%3A28%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20impact%20of%20generative%20artificial%20intelligence%20on%20socioeconomic%20inequalities%20and%20policy%20making&rft.jtitle=arXiv.org&rft.au=Capraro,%20Valerio&rft.date=2024-05-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2913534127%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2913534127&rft_id=info:pmid/&rfr_iscdi=true