Data-driven reconstruction of chaotic dynamical equations: the Hénon-Heiles type system
In this study, the classical two-dimensional potential \(V_N=\frac{1}{2}\,m\,\omega^2\,r^2 + \frac{1}{N}\,r^N\,\sin(N\,\theta)\), \(N \in {\mathbb Z}^+\), is considered. At \(N=1,2\), the system is superintegrable and integrable, respectively, whereas for \(N>2\) it exhibits a richer chaotic dyna...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-12 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Escobar-Ruiz, A M Jiménez-Lara, L Juárez-Florez, P M Montoya-Molina, F Moreno-Sáenz, J Quiroz-Juarez, M A |
description | In this study, the classical two-dimensional potential \(V_N=\frac{1}{2}\,m\,\omega^2\,r^2 + \frac{1}{N}\,r^N\,\sin(N\,\theta)\), \(N \in {\mathbb Z}^+\), is considered. At \(N=1,2\), the system is superintegrable and integrable, respectively, whereas for \(N>2\) it exhibits a richer chaotic dynamics. For instance, at \(N=3\) it coincides with the Hénon-Heiles system. The periodic, quasi-periodic and chaotic motions are systematically characterized employing time series, Poincaré sections, symmetry lines and the largest Lyapunov exponent as a function of the energy \(E\) and the parameter \(N\). Concrete results for the lowest cases \(N=3,4\) are presented in complete detail. This model is used as a benchmark system to estimate the accuracy of the Sparse Identification of Nonlinear Dynamical Systems (SINDy) method, a data-driven algorithm which reconstructs the underlying governing dynamical equations. We pay special attention at the transition from regular motion to chaos and how this influences the precision of the algorithm. In particular, it is shown that SINDy is a robust and stable tool possessing the ability to generate non-trivial approximate analytical expressions for periodic trajectories as well. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2913533434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2913533434</sourcerecordid><originalsourceid>FETCH-proquest_journals_29135334343</originalsourceid><addsrcrecordid>eNqNiksKgzAUAEOhUGm9w4OuBU20v20_eIAuupMQnxjRRPNiwSP1HL1YLfQAZRazmFmwgAuRRIeU8xULiZo4jvluz7NMBOxxkV5GpdNPNOBQWUPejcpra8BWoGppvVZQTkZ2WskWcBjlt9IJfI2Qv1_GmihH3SKBn3oEmshjt2HLSraE4c9rtr1d7-c86p0dRiRfNHZ0Zk4FPyYiEyKd-e_6ADhIQxs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2913533434</pqid></control><display><type>article</type><title>Data-driven reconstruction of chaotic dynamical equations: the Hénon-Heiles type system</title><source>Free E- Journals</source><creator>Escobar-Ruiz, A M ; Jiménez-Lara, L ; Juárez-Florez, P M ; Montoya-Molina, F ; Moreno-Sáenz, J ; Quiroz-Juarez, M A</creator><creatorcontrib>Escobar-Ruiz, A M ; Jiménez-Lara, L ; Juárez-Florez, P M ; Montoya-Molina, F ; Moreno-Sáenz, J ; Quiroz-Juarez, M A</creatorcontrib><description>In this study, the classical two-dimensional potential \(V_N=\frac{1}{2}\,m\,\omega^2\,r^2 + \frac{1}{N}\,r^N\,\sin(N\,\theta)\), \(N \in {\mathbb Z}^+\), is considered. At \(N=1,2\), the system is superintegrable and integrable, respectively, whereas for \(N>2\) it exhibits a richer chaotic dynamics. For instance, at \(N=3\) it coincides with the Hénon-Heiles system. The periodic, quasi-periodic and chaotic motions are systematically characterized employing time series, Poincaré sections, symmetry lines and the largest Lyapunov exponent as a function of the energy \(E\) and the parameter \(N\). Concrete results for the lowest cases \(N=3,4\) are presented in complete detail. This model is used as a benchmark system to estimate the accuracy of the Sparse Identification of Nonlinear Dynamical Systems (SINDy) method, a data-driven algorithm which reconstructs the underlying governing dynamical equations. We pay special attention at the transition from regular motion to chaos and how this influences the precision of the algorithm. In particular, it is shown that SINDy is a robust and stable tool possessing the ability to generate non-trivial approximate analytical expressions for periodic trajectories as well.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Dynamical systems ; Liapunov exponents ; Nonlinear systems</subject><ispartof>arXiv.org, 2023-12</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Escobar-Ruiz, A M</creatorcontrib><creatorcontrib>Jiménez-Lara, L</creatorcontrib><creatorcontrib>Juárez-Florez, P M</creatorcontrib><creatorcontrib>Montoya-Molina, F</creatorcontrib><creatorcontrib>Moreno-Sáenz, J</creatorcontrib><creatorcontrib>Quiroz-Juarez, M A</creatorcontrib><title>Data-driven reconstruction of chaotic dynamical equations: the Hénon-Heiles type system</title><title>arXiv.org</title><description>In this study, the classical two-dimensional potential \(V_N=\frac{1}{2}\,m\,\omega^2\,r^2 + \frac{1}{N}\,r^N\,\sin(N\,\theta)\), \(N \in {\mathbb Z}^+\), is considered. At \(N=1,2\), the system is superintegrable and integrable, respectively, whereas for \(N>2\) it exhibits a richer chaotic dynamics. For instance, at \(N=3\) it coincides with the Hénon-Heiles system. The periodic, quasi-periodic and chaotic motions are systematically characterized employing time series, Poincaré sections, symmetry lines and the largest Lyapunov exponent as a function of the energy \(E\) and the parameter \(N\). Concrete results for the lowest cases \(N=3,4\) are presented in complete detail. This model is used as a benchmark system to estimate the accuracy of the Sparse Identification of Nonlinear Dynamical Systems (SINDy) method, a data-driven algorithm which reconstructs the underlying governing dynamical equations. We pay special attention at the transition from regular motion to chaos and how this influences the precision of the algorithm. In particular, it is shown that SINDy is a robust and stable tool possessing the ability to generate non-trivial approximate analytical expressions for periodic trajectories as well.</description><subject>Algorithms</subject><subject>Dynamical systems</subject><subject>Liapunov exponents</subject><subject>Nonlinear systems</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNiksKgzAUAEOhUGm9w4OuBU20v20_eIAuupMQnxjRRPNiwSP1HL1YLfQAZRazmFmwgAuRRIeU8xULiZo4jvluz7NMBOxxkV5GpdNPNOBQWUPejcpra8BWoGppvVZQTkZ2WskWcBjlt9IJfI2Qv1_GmihH3SKBn3oEmshjt2HLSraE4c9rtr1d7-c86p0dRiRfNHZ0Zk4FPyYiEyKd-e_6ADhIQxs</recordid><startdate>20231215</startdate><enddate>20231215</enddate><creator>Escobar-Ruiz, A M</creator><creator>Jiménez-Lara, L</creator><creator>Juárez-Florez, P M</creator><creator>Montoya-Molina, F</creator><creator>Moreno-Sáenz, J</creator><creator>Quiroz-Juarez, M A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231215</creationdate><title>Data-driven reconstruction of chaotic dynamical equations: the Hénon-Heiles type system</title><author>Escobar-Ruiz, A M ; Jiménez-Lara, L ; Juárez-Florez, P M ; Montoya-Molina, F ; Moreno-Sáenz, J ; Quiroz-Juarez, M A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29135334343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Dynamical systems</topic><topic>Liapunov exponents</topic><topic>Nonlinear systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Escobar-Ruiz, A M</creatorcontrib><creatorcontrib>Jiménez-Lara, L</creatorcontrib><creatorcontrib>Juárez-Florez, P M</creatorcontrib><creatorcontrib>Montoya-Molina, F</creatorcontrib><creatorcontrib>Moreno-Sáenz, J</creatorcontrib><creatorcontrib>Quiroz-Juarez, M A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Escobar-Ruiz, A M</au><au>Jiménez-Lara, L</au><au>Juárez-Florez, P M</au><au>Montoya-Molina, F</au><au>Moreno-Sáenz, J</au><au>Quiroz-Juarez, M A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Data-driven reconstruction of chaotic dynamical equations: the Hénon-Heiles type system</atitle><jtitle>arXiv.org</jtitle><date>2023-12-15</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>In this study, the classical two-dimensional potential \(V_N=\frac{1}{2}\,m\,\omega^2\,r^2 + \frac{1}{N}\,r^N\,\sin(N\,\theta)\), \(N \in {\mathbb Z}^+\), is considered. At \(N=1,2\), the system is superintegrable and integrable, respectively, whereas for \(N>2\) it exhibits a richer chaotic dynamics. For instance, at \(N=3\) it coincides with the Hénon-Heiles system. The periodic, quasi-periodic and chaotic motions are systematically characterized employing time series, Poincaré sections, symmetry lines and the largest Lyapunov exponent as a function of the energy \(E\) and the parameter \(N\). Concrete results for the lowest cases \(N=3,4\) are presented in complete detail. This model is used as a benchmark system to estimate the accuracy of the Sparse Identification of Nonlinear Dynamical Systems (SINDy) method, a data-driven algorithm which reconstructs the underlying governing dynamical equations. We pay special attention at the transition from regular motion to chaos and how this influences the precision of the algorithm. In particular, it is shown that SINDy is a robust and stable tool possessing the ability to generate non-trivial approximate analytical expressions for periodic trajectories as well.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2913533434 |
source | Free E- Journals |
subjects | Algorithms Dynamical systems Liapunov exponents Nonlinear systems |
title | Data-driven reconstruction of chaotic dynamical equations: the Hénon-Heiles type system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T20%3A46%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Data-driven%20reconstruction%20of%20chaotic%20dynamical%20equations:%20the%20H%C3%A9non-Heiles%20type%20system&rft.jtitle=arXiv.org&rft.au=Escobar-Ruiz,%20A%20M&rft.date=2023-12-15&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2913533434%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2913533434&rft_id=info:pmid/&rfr_iscdi=true |