Data-driven reconstruction of chaotic dynamical equations: the Hénon-Heiles type system
In this study, the classical two-dimensional potential \(V_N=\frac{1}{2}\,m\,\omega^2\,r^2 + \frac{1}{N}\,r^N\,\sin(N\,\theta)\), \(N \in {\mathbb Z}^+\), is considered. At \(N=1,2\), the system is superintegrable and integrable, respectively, whereas for \(N>2\) it exhibits a richer chaotic dyna...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-12 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, the classical two-dimensional potential \(V_N=\frac{1}{2}\,m\,\omega^2\,r^2 + \frac{1}{N}\,r^N\,\sin(N\,\theta)\), \(N \in {\mathbb Z}^+\), is considered. At \(N=1,2\), the system is superintegrable and integrable, respectively, whereas for \(N>2\) it exhibits a richer chaotic dynamics. For instance, at \(N=3\) it coincides with the Hénon-Heiles system. The periodic, quasi-periodic and chaotic motions are systematically characterized employing time series, Poincaré sections, symmetry lines and the largest Lyapunov exponent as a function of the energy \(E\) and the parameter \(N\). Concrete results for the lowest cases \(N=3,4\) are presented in complete detail. This model is used as a benchmark system to estimate the accuracy of the Sparse Identification of Nonlinear Dynamical Systems (SINDy) method, a data-driven algorithm which reconstructs the underlying governing dynamical equations. We pay special attention at the transition from regular motion to chaos and how this influences the precision of the algorithm. In particular, it is shown that SINDy is a robust and stable tool possessing the ability to generate non-trivial approximate analytical expressions for periodic trajectories as well. |
---|---|
ISSN: | 2331-8422 |